platform_bionic/libc/private/bionic_atomic_arm.h

188 lines
6.1 KiB
C
Raw Normal View History

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef BIONIC_ATOMIC_ARM_H
#define BIONIC_ATOMIC_ARM_H
#include <machine/cpu-features.h>
/* Some of the harware instructions used below are not available in Thumb-1
* mode (they are if you build in ARM or Thumb-2 mode though). To solve this
* problem, we're going to use the same technique than libatomics_ops,
* which is to temporarily switch to ARM, do the operation, then switch
* back to Thumb-1.
*
* This results in two 'bx' jumps, just like a normal function call, but
* everything is kept inlined, avoids loading or computing the function's
* address, and prevents a little I-cache trashing too.
*
* However, it is highly recommended to avoid compiling any C library source
* file that use these functions in Thumb-1 mode.
*
* Define three helper macros to implement this:
*/
#if defined(__thumb__) && !defined(__thumb2__)
# define __ATOMIC_SWITCH_TO_ARM \
"adr r3, 5f\n" \
"bx r3\n" \
".align\n" \
".arm\n" \
"5:\n"
/* note: the leading \n below is intentional */
# define __ATOMIC_SWITCH_TO_THUMB \
"\n" \
"adr r3, 6f\n" \
"bx r3\n" \
".thumb" \
"6:\n"
# define __ATOMIC_CLOBBERS "r3" /* list of clobbered registers */
/* Warn the user that ARM mode should really be preferred! */
# warning Rebuilding this source file in ARM mode is highly recommended for performance!!
#else
# define __ATOMIC_SWITCH_TO_ARM /* nothing */
# define __ATOMIC_SWITCH_TO_THUMB /* nothing */
# define __ATOMIC_CLOBBERS /* nothing */
#endif
/* Define a full memory barrier, this is only needed if we build the
* platform for a multi-core device. For the record, using a 'dmb'
* instruction on a Nexus One device can take up to 180 ns even if
* it is completely un-necessary on this device.
*
* NOTE: This is where the platform and NDK headers atomic headers are
* going to diverge. With the NDK, we don't know if the generated
* code is going to run on a single or multi-core device, so we
* need to be cautious.
*
* I.e. on single-core devices, the helper immediately returns,
* on multi-core devices, it uses "dmb" or any other means to
* perform a full-memory barrier.
*
* There are three cases to consider for the platform:
*
* - multi-core ARMv7-A => use the 'dmb' hardware instruction
* - multi-core ARMv6 => use the coprocessor
* - single core ARMv6+ => do not use any hardware barrier
*/
#if defined(ANDROID_SMP) && ANDROID_SMP == 1
/* For ARMv7-A, we can use the 'dmb' instruction directly */
__ATOMIC_INLINE__ void __bionic_memory_barrier(void) {
/* Note: we always build in ARM or Thumb-2 on ARMv7-A, so don't
* bother with __ATOMIC_SWITCH_TO_ARM */
__asm__ __volatile__ ( "dmb" : : : "memory" );
}
#else /* !ANDROID_SMP */
__ATOMIC_INLINE__ void __bionic_memory_barrier(void) {
/* A simple compiler barrier */
__asm__ __volatile__ ( "" : : : "memory" );
}
#endif /* !ANDROID_SMP */
/* Compare-and-swap, without any explicit barriers. Note that this functions
* returns 0 on success, and 1 on failure. The opposite convention is typically
* used on other platforms.
*/
__ATOMIC_INLINE__ int
__bionic_cmpxchg(int32_t old_value, int32_t new_value, volatile int32_t* ptr)
{
int32_t prev, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%3]\n"
"mov %1, #0\n"
"teq %0, %4\n"
#ifdef __thumb2__
"it eq\n"
#endif
"strexeq %1, %5, [%3]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (status), "+m"(*ptr)
: "r" (ptr), "Ir" (old_value), "r" (new_value)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev != old_value;
}
/* Swap operation, without any explicit barriers. */
__ATOMIC_INLINE__ int32_t
__bionic_swap(int32_t new_value, volatile int32_t* ptr)
{
int32_t prev, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%3]\n"
"strex %1, %4, [%3]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (status), "+m" (*ptr)
: "r" (ptr), "r" (new_value)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev;
}
/* Atomic increment - without any barriers
* This returns the old value
*/
__ATOMIC_INLINE__ int32_t
__bionic_atomic_inc(volatile int32_t* ptr)
{
int32_t prev, tmp, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%4]\n"
"add %1, %0, #1\n"
"strex %2, %1, [%4]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (tmp), "=&r" (status), "+m"(*ptr)
: "r" (ptr)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev;
}
/* Atomic decrement - without any barriers
* This returns the old value.
*/
__ATOMIC_INLINE__ int32_t
__bionic_atomic_dec(volatile int32_t* ptr)
{
int32_t prev, tmp, status;
do {
__asm__ __volatile__ (
__ATOMIC_SWITCH_TO_ARM
"ldrex %0, [%4]\n"
"sub %1, %0, #1\n"
"strex %2, %1, [%4]"
__ATOMIC_SWITCH_TO_THUMB
: "=&r" (prev), "=&r" (tmp), "=&r" (status), "+m"(*ptr)
: "r" (ptr)
: __ATOMIC_CLOBBERS "cc");
} while (__builtin_expect(status != 0, 0));
return prev;
}
#endif /* SYS_ATOMICS_ARM_H */