platform_bionic/libc/include/pthread.h

320 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _PTHREAD_H_
#define _PTHREAD_H_
#include <limits.h>
#include <bits/pthread_types.h>
#include <sched.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <time.h>
__BEGIN_DECLS
enum {
PTHREAD_MUTEX_NORMAL = 0,
PTHREAD_MUTEX_RECURSIVE = 1,
PTHREAD_MUTEX_ERRORCHECK = 2,
PTHREAD_MUTEX_ERRORCHECK_NP = PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE_NP = PTHREAD_MUTEX_RECURSIVE,
PTHREAD_MUTEX_DEFAULT = PTHREAD_MUTEX_NORMAL
};
#define PTHREAD_MUTEX_INITIALIZER { { ((PTHREAD_MUTEX_NORMAL & 3) << 14) } }
#define PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP { { ((PTHREAD_MUTEX_RECURSIVE & 3) << 14) } }
#define PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP { { ((PTHREAD_MUTEX_ERRORCHECK & 3) << 14) } }
#define PTHREAD_COND_INITIALIZER { { 0 } }
#if __ANDROID_API__ >= 21
#define PTHREAD_COND_INITIALIZER_MONOTONIC_NP { { 1 << 1 } }
#endif
#define PTHREAD_RWLOCK_INITIALIZER { { 0 } }
enum {
PTHREAD_RWLOCK_PREFER_READER_NP = 0,
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP = 1,
};
#define PTHREAD_ONCE_INIT 0
#if __ANDROID_API__ >= 24
#define PTHREAD_BARRIER_SERIAL_THREAD (-1)
#endif
#if defined(__LP64__)
#define PTHREAD_STACK_MIN (4 * PAGE_SIZE)
#else
#define PTHREAD_STACK_MIN (2 * PAGE_SIZE)
#endif
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
#define PTHREAD_CREATE_DETACHED 1
#define PTHREAD_CREATE_JOINABLE 0
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
#define PTHREAD_EXPLICIT_SCHED 0
#define PTHREAD_INHERIT_SCHED 1
#define PTHREAD_PRIO_NONE 0
#define PTHREAD_PRIO_INHERIT 1
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
#define PTHREAD_PROCESS_PRIVATE 0
#define PTHREAD_PROCESS_SHARED 1
#define PTHREAD_SCOPE_SYSTEM 0
#define PTHREAD_SCOPE_PROCESS 1
int pthread_atfork(void (*__prepare)(void), void (*__parent)(void), void (*__child)(void));
int pthread_attr_destroy(pthread_attr_t* __attr);
int pthread_attr_getdetachstate(const pthread_attr_t* __attr, int* __state);
int pthread_attr_getguardsize(const pthread_attr_t* __attr, size_t* __size);
int pthread_attr_getinheritsched(const pthread_attr_t* __attr, int* __flag) __INTRODUCED_IN(28);
int pthread_attr_getschedparam(const pthread_attr_t* __attr, struct sched_param* __param);
int pthread_attr_getschedpolicy(const pthread_attr_t* __attr, int* __policy);
int pthread_attr_getscope(const pthread_attr_t* __attr, int* __scope);
int pthread_attr_getstack(const pthread_attr_t* __attr, void** __addr, size_t* __size);
int pthread_attr_getstacksize(const pthread_attr_t* __attr, size_t* __size);
int pthread_attr_init(pthread_attr_t* __attr);
int pthread_attr_setdetachstate(pthread_attr_t* __attr, int __state);
int pthread_attr_setguardsize(pthread_attr_t* __attr, size_t __size);
int pthread_attr_setinheritsched(pthread_attr_t* __attr, int __flag) __INTRODUCED_IN(28);
int pthread_attr_setschedparam(pthread_attr_t* __attr, const struct sched_param* __param);
int pthread_attr_setschedpolicy(pthread_attr_t* __attr, int __policy);
int pthread_attr_setscope(pthread_attr_t* __attr, int __scope);
int pthread_attr_setstack(pthread_attr_t* __attr, void* __addr, size_t __size);
int pthread_attr_setstacksize(pthread_attr_t* __addr, size_t __size);
int pthread_condattr_destroy(pthread_condattr_t* __attr);
int pthread_condattr_getclock(const pthread_condattr_t* __attr, clockid_t* __clock) __INTRODUCED_IN(21);
int pthread_condattr_getpshared(const pthread_condattr_t* __attr, int* __shared);
int pthread_condattr_init(pthread_condattr_t* __attr);
int pthread_condattr_setclock(pthread_condattr_t* __attr, clockid_t __clock) __INTRODUCED_IN(21);
int pthread_condattr_setpshared(pthread_condattr_t* __attr, int __shared);
int pthread_cond_broadcast(pthread_cond_t* __cond);
int pthread_cond_clockwait(pthread_cond_t* __cond, pthread_mutex_t* __mutex, clockid_t __clock,
const struct timespec* __timeout) __INTRODUCED_IN(30);
int pthread_cond_destroy(pthread_cond_t* __cond);
int pthread_cond_init(pthread_cond_t* __cond, const pthread_condattr_t* __attr);
int pthread_cond_signal(pthread_cond_t* __cond);
int pthread_cond_timedwait(pthread_cond_t* __cond, pthread_mutex_t* __mutex, const struct timespec* __timeout);
Add _monotonic_np versions of timed wait functions As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
2018-03-05 23:14:44 +01:00
/*
* Condition variables use CLOCK_REALTIME by default for their timeouts, however that is
* typically inappropriate, since that clock can change dramatically, causing the timeout to
* either expire earlier or much later than intended.
* Condition variables have an initialization option to use CLOCK_MONOTONIC, and in addition,
* Android provides pthread_cond_timedwait_monotonic_np to use CLOCK_MONOTONIC on a condition
* variable for this single wait no matter how it was initialized.
* Note that pthread_cond_clockwait() allows specifying an arbitrary clock and has superseded this
* function.
Add _monotonic_np versions of timed wait functions As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
2018-03-05 23:14:44 +01:00
*/
int pthread_cond_timedwait_monotonic_np(pthread_cond_t* __cond, pthread_mutex_t* __mutex,
const struct timespec* __timeout) __INTRODUCED_IN_64(28);
int pthread_cond_wait(pthread_cond_t* __cond, pthread_mutex_t* __mutex);
#if defined(__clang__)
/*
* Disable -Wbuiltin-requires-header because clang confuses this declaration with the one defined in
* "llvm/tools/clang/include/clang/Basic/Builtins.def", which did not define any formal arguments.
* It seems to be an upstream bug and the fix (https://reviews.llvm.org/D58531) is still under
* review. Thus, let's disable the warning for this function declaration.
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wbuiltin-requires-header"
#endif
int pthread_create(pthread_t* __pthread_ptr, pthread_attr_t const* __attr, void* (*__start_routine)(void*), void*);
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
int pthread_detach(pthread_t __pthread);
void pthread_exit(void* __return_value) __noreturn;
int pthread_equal(pthread_t __lhs, pthread_t __rhs);
int pthread_getattr_np(pthread_t __pthread, pthread_attr_t* __attr);
int pthread_getcpuclockid(pthread_t __pthread, clockid_t* __clock);
int pthread_getschedparam(pthread_t __pthread, int* __policy, struct sched_param* __param);
void* pthread_getspecific(pthread_key_t __key);
pid_t pthread_gettid_np(pthread_t __pthread) __INTRODUCED_IN(21);
int pthread_join(pthread_t __pthread, void** __return_value_ptr);
int pthread_key_create(pthread_key_t* __key_ptr, void (*__key_destructor)(void*));
int pthread_key_delete(pthread_key_t __key);
int pthread_mutexattr_destroy(pthread_mutexattr_t* __attr);
int pthread_mutexattr_getpshared(const pthread_mutexattr_t* __attr, int* __shared);
int pthread_mutexattr_gettype(const pthread_mutexattr_t* __attr, int* __type);
int pthread_mutexattr_getprotocol(const pthread_mutexattr_t* __attr, int* __protocol) __INTRODUCED_IN(28);
int pthread_mutexattr_init(pthread_mutexattr_t* __attr);
int pthread_mutexattr_setpshared(pthread_mutexattr_t* __attr, int __shared);
int pthread_mutexattr_settype(pthread_mutexattr_t* __attr, int __type);
int pthread_mutexattr_setprotocol(pthread_mutexattr_t* __attr, int __protocol) __INTRODUCED_IN(28);
int pthread_mutex_clocklock(pthread_mutex_t* __mutex, clockid_t __clock,
const struct timespec* __abstime) __INTRODUCED_IN(30);
int pthread_mutex_destroy(pthread_mutex_t* __mutex);
int pthread_mutex_init(pthread_mutex_t* __mutex, const pthread_mutexattr_t* __attr);
int pthread_mutex_lock(pthread_mutex_t* __mutex);
int pthread_mutex_timedlock(pthread_mutex_t* __mutex, const struct timespec* __timeout)
__INTRODUCED_IN(21);
Add _monotonic_np versions of timed wait functions As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
2018-03-05 23:14:44 +01:00
/*
* POSIX historically only supported using pthread_mutex_timedlock() with CLOCK_REALTIME, however
* that is typically inappropriate, since that clock can change dramatically, causing the timeout to
Add _monotonic_np versions of timed wait functions As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
2018-03-05 23:14:44 +01:00
* either expire earlier or much later than intended.
* This function is added to use a timespec based on CLOCK_MONOTONIC that does not suffer
* from this issue.
* Note that pthread_mutex_clocklock() allows specifying an arbitrary clock and has superseded this
* function.
Add _monotonic_np versions of timed wait functions As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
2018-03-05 23:14:44 +01:00
*/
int pthread_mutex_timedlock_monotonic_np(pthread_mutex_t* __mutex, const struct timespec* __timeout)
__INTRODUCED_IN(28);
int pthread_mutex_trylock(pthread_mutex_t* __mutex);
int pthread_mutex_unlock(pthread_mutex_t* __mutex);
#if __ANDROID_API__ < 21
/*
* Cruft for supporting old API levels. Pre-L we didn't have the proper POSIX
* APIs for things, but instead had some locally grown, artisan equivalents.
* Keep exposing the old prototypes on old API levels so we don't regress
* functionality.
*
* See the following bugs:
* * https://github.com/android-ndk/ndk/issues/420
* * https://github.com/android-ndk/ndk/issues/423
* * https://stackoverflow.com/q/44580542/632035
*/
int pthread_mutex_lock_timeout_np(pthread_mutex_t* __mutex, unsigned __timeout_ms);
int pthread_cond_timeout_np(pthread_cond_t* __cond, pthread_mutex_t* __mutex, unsigned __timeout_ms);
int pthread_cond_timedwait_relative_np(pthread_cond_t* __cond, pthread_mutex_t* __mutex, const struct timespec* __relative_timeout);
#endif
int pthread_once(pthread_once_t* __once, void (*__init_routine)(void));
int pthread_rwlockattr_init(pthread_rwlockattr_t* __attr);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t* __attr);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t* __attr, int* __shared);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t* __attr, int __shared);
int pthread_rwlockattr_getkind_np(const pthread_rwlockattr_t* __attr, int* __kind)
__INTRODUCED_IN(23);
int pthread_rwlockattr_setkind_np(pthread_rwlockattr_t* __attr, int __kind) __INTRODUCED_IN(23);
int pthread_rwlock_clockrdlock(pthread_rwlock_t* __rwlock, clockid_t __clock,
const struct timespec* __timeout) __INTRODUCED_IN(30);
int pthread_rwlock_clockwrlock(pthread_rwlock_t* __rwlock, clockid_t __clock,
const struct timespec* __timeout) __INTRODUCED_IN(30);
int pthread_rwlock_destroy(pthread_rwlock_t* __rwlock);
int pthread_rwlock_init(pthread_rwlock_t* __rwlock, const pthread_rwlockattr_t* __attr);
int pthread_rwlock_rdlock(pthread_rwlock_t* __rwlock);
int pthread_rwlock_timedrdlock(pthread_rwlock_t* __rwlock, const struct timespec* __timeout);
Add _monotonic_np versions of timed wait functions As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
2018-03-05 23:14:44 +01:00
/* See the comment on pthread_mutex_timedlock_monotonic_np for usage of this function. */
int pthread_rwlock_timedrdlock_monotonic_np(pthread_rwlock_t* __rwlock,
const struct timespec* __timeout) __INTRODUCED_IN(28);
int pthread_rwlock_timedwrlock(pthread_rwlock_t* __rwlock, const struct timespec* __timeout);
Add _monotonic_np versions of timed wait functions As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
2018-03-05 23:14:44 +01:00
/* See the comment on pthread_mutex_timedlock_monotonic_np for usage of this function. */
int pthread_rwlock_timedwrlock_monotonic_np(pthread_rwlock_t* __rwlock,
const struct timespec* __timeout) __INTRODUCED_IN(28);
int pthread_rwlock_tryrdlock(pthread_rwlock_t* __rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t* __rwlock);
int pthread_rwlock_unlock(pthread_rwlock_t* __rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t* __rwlock);
#if __ANDROID_API__ >= 24
int pthread_barrierattr_init(pthread_barrierattr_t* __attr) __INTRODUCED_IN(24);
int pthread_barrierattr_destroy(pthread_barrierattr_t* __attr) __INTRODUCED_IN(24);
int pthread_barrierattr_getpshared(const pthread_barrierattr_t* __attr, int* __shared) __INTRODUCED_IN(24);
int pthread_barrierattr_setpshared(pthread_barrierattr_t* __attr, int __shared) __INTRODUCED_IN(24);
#endif
#if __ANDROID_API__ >= 24
int pthread_barrier_init(pthread_barrier_t* __barrier, const pthread_barrierattr_t* __attr, unsigned __count) __INTRODUCED_IN(24);
int pthread_barrier_destroy(pthread_barrier_t* __barrier) __INTRODUCED_IN(24);
int pthread_barrier_wait(pthread_barrier_t* __barrier) __INTRODUCED_IN(24);
#endif
#if __ANDROID_API__ >= 24
int pthread_spin_destroy(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
int pthread_spin_init(pthread_spinlock_t* __spinlock, int __shared) __INTRODUCED_IN(24);
int pthread_spin_lock(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
int pthread_spin_trylock(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
int pthread_spin_unlock(pthread_spinlock_t* __spinlock) __INTRODUCED_IN(24);
#endif
pthread_t pthread_self(void) __attribute_const__;
#if defined(__USE_GNU)
int pthread_getname_np(pthread_t __pthread, char* __buf, size_t __n) __INTRODUCED_IN(26);
#endif
/* TODO: this should be __USE_GNU too. */
int pthread_setname_np(pthread_t __pthread, const char* __name);
int pthread_setschedparam(pthread_t __pthread, int __policy, const struct sched_param* __param);
int pthread_setschedprio(pthread_t __pthread, int __priority) __INTRODUCED_IN(28);
int pthread_setspecific(pthread_key_t __key, const void* __value);
typedef void (*__pthread_cleanup_func_t)(void*);
typedef struct __pthread_cleanup_t {
struct __pthread_cleanup_t* __cleanup_prev;
__pthread_cleanup_func_t __cleanup_routine;
void* __cleanup_arg;
} __pthread_cleanup_t;
void __pthread_cleanup_push(__pthread_cleanup_t* c, __pthread_cleanup_func_t, void*);
void __pthread_cleanup_pop(__pthread_cleanup_t*, int);
/* Believe or not, the definitions of pthread_cleanup_push and
* pthread_cleanup_pop below are correct. Posix states that these
* can be implemented as macros that might introduce opening and
* closing braces, and that using setjmp/longjmp/return/break/continue
* between them results in undefined behavior.
*/
#define pthread_cleanup_push(routine, arg) \
do { \
__pthread_cleanup_t __cleanup; \
__pthread_cleanup_push( &__cleanup, (routine), (arg) ); \
#define pthread_cleanup_pop(execute) \
__pthread_cleanup_pop( &__cleanup, (execute)); \
} while (0); \
__END_DECLS
#endif