platform_bionic/libc/bionic/pthread_internal.cpp

118 lines
4.3 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "pthread_internal.h"
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <async_safe/log.h>
#include "private/ScopedRWLock.h"
#include "private/bionic_futex.h"
#include "private/bionic_tls.h"
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
static pthread_internal_t* g_thread_list = nullptr;
static pthread_rwlock_t g_thread_list_lock = PTHREAD_RWLOCK_INITIALIZER;
pthread_t __pthread_internal_add(pthread_internal_t* thread) {
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
ScopedWriteLock locker(&g_thread_list_lock);
// We insert at the head.
thread->next = g_thread_list;
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
thread->prev = nullptr;
if (thread->next != nullptr) {
thread->next->prev = thread;
}
g_thread_list = thread;
return reinterpret_cast<pthread_t>(thread);
}
void __pthread_internal_remove(pthread_internal_t* thread) {
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
ScopedWriteLock locker(&g_thread_list_lock);
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
if (thread->next != nullptr) {
thread->next->prev = thread->prev;
}
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
if (thread->prev != nullptr) {
thread->prev->next = thread->next;
} else {
g_thread_list = thread->next;
}
}
static void __pthread_internal_free(pthread_internal_t* thread) {
if (thread->mmap_size != 0) {
// Free mapped space, including thread stack and pthread_internal_t.
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
munmap(thread->mmap_base, thread->mmap_size);
}
}
void __pthread_internal_remove_and_free(pthread_internal_t* thread) {
__pthread_internal_remove(thread);
__pthread_internal_free(thread);
}
pid_t __pthread_internal_gettid(pthread_t thread_id, const char* caller) {
pthread_internal_t* thread = __pthread_internal_find(thread_id, caller);
return thread ? thread->tid : -1;
}
pthread_internal_t* __pthread_internal_find(pthread_t thread_id, const char* caller) {
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(thread_id);
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
// Check if we're looking for ourselves before acquiring the lock.
if (thread == __get_thread()) return thread;
{
// Make sure to release the lock before the abort below. Otherwise,
// some apps might deadlock in their own crash handlers (see b/6565627).
ScopedReadLock locker(&g_thread_list_lock);
for (pthread_internal_t* t = g_thread_list; t != nullptr; t = t->next) {
if (t == thread) return thread;
}
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
}
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
// Historically we'd return null, but
if (android_get_application_target_sdk_version() >= __ANDROID_API_O__) {
if (thread == nullptr) {
// This seems to be a common mistake, and it's relatively harmless because
// there will never be a valid thread at address 0, whereas other invalid
// addresses might sometimes contain threads or things that look enough like
// threads for us to do some real damage by continuing.
// TODO: try getting rid of this when Treble lets us keep vendor blobs on an old API level.
async_safe_format_log(ANDROID_LOG_WARN, "libc", "invalid pthread_t (0) passed to %s", caller);
} else {
async_safe_fatal("invalid pthread_t %p passed to %s", thread, caller);
}
}
Be more strict about using invalid `pthread_t`s. Another release, another attempt to remove the global thread list. But this time, let's admit that it's not going away. We can switch to using a read/write lock for the global thread list, and to aborting rather than quietly returning ESRCH if we're given an invalid pthread_t. This change affects pthread_detach, pthread_getcpuclockid, pthread_getschedparam/pthread_setschedparam, pthread_join, and pthread_kill: instead of returning ESRCH when passed an invalid pthread_t, if you're targeting O or above, they'll abort with the message "attempt to use invalid pthread_t". Note that this doesn't change behavior as much as you might think: the old lookup only held the global thread list lock for the duration of the lookup, so there was still a race between that and the dereference in the caller, given that callers actually need the tid to pass to some syscall or other, and sometimes update fields in the pthread_internal_t struct too. (This patch replaces such users with calls to pthread_gettid_np, which at least makes the TOCTOU window smaller.) We can't check thread->tid against 0 to see whether a pthread_t is still valid because a dead thread gets its thread struct unmapped along with its stack, so the dereference isn't safe. Taking the affected functions one by one: * pthread_getcpuclockid and pthread_getschedparam/pthread_setschedparam should be fine. Unsafe calls to those seem highly unlikely. * Unsafe pthread_detach callers probably want to switch to pthread_attr_setdetachstate instead, or using pthread_detach(pthread_self()) from the new thread's start routine rather than doing the detach in the parent. * pthread_join calls should be safe anyway, because a joinable thread won't actually exit and unmap until it's joined. If you're joining an unjoinable thread, the fix is to stop marking it detached. If you're joining an already-joined thread, you need to rethink your design. * Unsafe pthread_kill calls aren't portably fixable. (And are obviously inherently non-portable as-is.) The best alternative on Android is to use pthread_gettid_np at some point that you know the thread to be alive, and then call kill/tgkill directly. That's still not completely safe because if you're too late, the tid may have been reused, but then your code is inherently unsafe anyway. Bug: http://b/19636317 Test: ran tests Change-Id: I0372c4428e8a7f1c3af5c9334f5d9c25f2c73f21
2017-02-14 02:59:29 +01:00
return nullptr;
}