platform_bionic/tests/time_test.cpp

604 lines
16 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <time.h>
#include <errno.h>
#include <gtest/gtest.h>
#include <pthread.h>
#include <signal.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <atomic>
#include "ScopedSignalHandler.h"
#include "utils.h"
#include "private/bionic_constants.h"
TEST(time, gmtime) {
time_t t = 0;
tm* broken_down = gmtime(&t);
ASSERT_TRUE(broken_down != NULL);
ASSERT_EQ(0, broken_down->tm_sec);
ASSERT_EQ(0, broken_down->tm_min);
ASSERT_EQ(0, broken_down->tm_hour);
ASSERT_EQ(1, broken_down->tm_mday);
ASSERT_EQ(0, broken_down->tm_mon);
ASSERT_EQ(1970, broken_down->tm_year + 1900);
}
static void* gmtime_no_stack_overflow_14313703_fn(void*) {
const char* original_tz = getenv("TZ");
// Ensure we'll actually have to enter tzload by using a time zone that doesn't exist.
setenv("TZ", "gmtime_stack_overflow_14313703", 1);
tzset();
if (original_tz != NULL) {
setenv("TZ", original_tz, 1);
}
tzset();
return NULL;
}
TEST(time, gmtime_no_stack_overflow_14313703) {
// Is it safe to call tzload on a thread with a small stack?
// http://b/14313703
// https://code.google.com/p/android/issues/detail?id=61130
pthread_attr_t a;
ASSERT_EQ(0, pthread_attr_init(&a));
ASSERT_EQ(0, pthread_attr_setstacksize(&a, PTHREAD_STACK_MIN));
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &a, gmtime_no_stack_overflow_14313703_fn, NULL));
ASSERT_EQ(0, pthread_join(t, nullptr));
}
TEST(time, mktime_empty_TZ) {
// tzcode used to have a bug where it didn't reinitialize some internal state.
// Choose a time where DST is set.
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 1980 - 1900;
t.tm_mon = 6;
t.tm_mday = 2;
setenv("TZ", "America/Los_Angeles", 1);
tzset();
ASSERT_EQ(static_cast<time_t>(331372800U), mktime(&t));
memset(&t, 0, sizeof(tm));
t.tm_year = 1980 - 1900;
t.tm_mon = 6;
t.tm_mday = 2;
setenv("TZ", "", 1); // Implies UTC.
tzset();
ASSERT_EQ(static_cast<time_t>(331344000U), mktime(&t));
}
TEST(time, mktime_10310929) {
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 200;
t.tm_mon = 2;
t.tm_mday = 10;
#if !defined(__LP64__)
// 32-bit bionic stupidly had a signed 32-bit time_t.
ASSERT_EQ(-1, mktime(&t));
#else
// Everyone else should be using a signed 64-bit time_t.
ASSERT_GE(sizeof(time_t) * 8, 64U);
setenv("TZ", "America/Los_Angeles", 1);
tzset();
ASSERT_EQ(static_cast<time_t>(4108348800U), mktime(&t));
setenv("TZ", "UTC", 1);
tzset();
ASSERT_EQ(static_cast<time_t>(4108320000U), mktime(&t));
#endif
}
TEST(time, strftime) {
setenv("TZ", "UTC", 1);
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 200;
t.tm_mon = 2;
t.tm_mday = 10;
char buf[64];
// Seconds since the epoch.
#if defined(__BIONIC__) || defined(__LP64__) // Not 32-bit glibc.
EXPECT_EQ(10U, strftime(buf, sizeof(buf), "%s", &t));
EXPECT_STREQ("4108320000", buf);
#endif
// Date and time as text.
EXPECT_EQ(24U, strftime(buf, sizeof(buf), "%c", &t));
EXPECT_STREQ("Sun Mar 10 00:00:00 2100", buf);
}
TEST(time, strftime_null_tm_zone) {
// Netflix on Nexus Player wouldn't start (http://b/25170306).
struct tm t;
memset(&t, 0, sizeof(tm));
char buf[64];
setenv("TZ", "America/Los_Angeles", 1);
tzset();
t.tm_isdst = 0; // "0 if Daylight Savings Time is not in effect".
EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<PST>", buf);
#if defined(__BIONIC__) // glibc 2.19 only copes with tm_isdst being 0 and 1.
t.tm_isdst = 2; // "positive if Daylight Savings Time is in effect"
EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<PDT>", buf);
t.tm_isdst = -123; // "and negative if the information is not available".
EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<>", buf);
#endif
setenv("TZ", "UTC", 1);
tzset();
t.tm_isdst = 0;
EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<UTC>", buf);
#if defined(__BIONIC__) // glibc 2.19 thinks UTC DST is "UTC".
t.tm_isdst = 1; // UTC has no DST.
EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<>", buf);
#endif
}
TEST(time, strftime_l) {
locale_t cloc = newlocale(LC_ALL, "C.UTF-8", 0);
locale_t old_locale = uselocale(cloc);
setenv("TZ", "UTC", 1);
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 200;
t.tm_mon = 2;
t.tm_mday = 10;
// Date and time as text.
char buf[64];
EXPECT_EQ(24U, strftime_l(buf, sizeof(buf), "%c", &t, cloc));
EXPECT_STREQ("Sun Mar 10 00:00:00 2100", buf);
uselocale(old_locale);
freelocale(cloc);
}
TEST(time, strptime) {
setenv("TZ", "UTC", 1);
struct tm t;
char buf[64];
memset(&t, 0, sizeof(t));
strptime("11:14", "%R", &t);
strftime(buf, sizeof(buf), "%H:%M", &t);
EXPECT_STREQ("11:14", buf);
memset(&t, 0, sizeof(t));
strptime("09:41:53", "%T", &t);
strftime(buf, sizeof(buf), "%H:%M:%S", &t);
EXPECT_STREQ("09:41:53", buf);
}
void SetTime(timer_t t, time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) {
itimerspec ts;
ts.it_value.tv_sec = value_s;
ts.it_value.tv_nsec = value_ns;
ts.it_interval.tv_sec = interval_s;
ts.it_interval.tv_nsec = interval_ns;
ASSERT_EQ(0, timer_settime(t, 0, &ts, NULL));
}
static void NoOpNotifyFunction(sigval_t) {
}
TEST(time, timer_create) {
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
// Timers are not inherited by the child.
ASSERT_EQ(-1, timer_delete(timer_id));
ASSERT_EQ(EINVAL, errno);
_exit(0);
}
AssertChildExited(pid, 0);
ASSERT_EQ(0, timer_delete(timer_id));
}
static int timer_create_SIGEV_SIGNAL_signal_handler_invocation_count;
static void timer_create_SIGEV_SIGNAL_signal_handler(int signal_number) {
++timer_create_SIGEV_SIGNAL_signal_handler_invocation_count;
ASSERT_EQ(SIGUSR1, signal_number);
}
TEST(time, timer_create_SIGEV_SIGNAL) {
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_SIGNAL;
se.sigev_signo = SIGUSR1;
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
timer_create_SIGEV_SIGNAL_signal_handler_invocation_count = 0;
ScopedSignalHandler ssh(SIGUSR1, timer_create_SIGEV_SIGNAL_signal_handler);
ASSERT_EQ(0, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count);
itimerspec ts;
ts.it_value.tv_sec = 0;
ts.it_value.tv_nsec = 1;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ASSERT_EQ(0, timer_settime(timer_id, 0, &ts, NULL));
usleep(500000);
ASSERT_EQ(1, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count);
}
struct Counter {
private:
std::atomic<int> value;
timer_t timer_id;
sigevent_t se;
bool timer_valid;
void Create() {
ASSERT_FALSE(timer_valid);
ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &timer_id));
timer_valid = true;
}
public:
explicit Counter(void (*fn)(sigval_t)) : value(0), timer_valid(false) {
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = fn;
se.sigev_value.sival_ptr = this;
Create();
}
void DeleteTimer() {
ASSERT_TRUE(timer_valid);
ASSERT_EQ(0, timer_delete(timer_id));
timer_valid = false;
}
~Counter() {
if (timer_valid) {
DeleteTimer();
}
}
int Value() const {
return value;
}
void SetTime(time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) {
::SetTime(timer_id, value_s, value_ns, interval_s, interval_ns);
}
bool ValueUpdated() {
int current_value = value;
time_t start = time(NULL);
while (current_value == value && (time(NULL) - start) < 5) {
}
return current_value != value;
}
static void CountNotifyFunction(sigval_t value) {
Counter* cd = reinterpret_cast<Counter*>(value.sival_ptr);
++cd->value;
}
static void CountAndDisarmNotifyFunction(sigval_t value) {
Counter* cd = reinterpret_cast<Counter*>(value.sival_ptr);
++cd->value;
// Setting the initial expiration time to 0 disarms the timer.
cd->SetTime(0, 0, 1, 0);
}
};
TEST(time, timer_settime_0) {
Counter counter(Counter::CountAndDisarmNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 500000000, 1, 0);
sleep(1);
// The count should just be 1 because we disarmed the timer the first time it fired.
ASSERT_EQ(1, counter.Value());
}
TEST(time, timer_settime_repeats) {
Counter counter(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 1, 0, 10);
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
counter.DeleteTimer();
// Add a sleep as other threads may be calling the callback function when the timer is deleted.
usleep(500000);
}
static int timer_create_NULL_signal_handler_invocation_count;
static void timer_create_NULL_signal_handler(int signal_number) {
++timer_create_NULL_signal_handler_invocation_count;
ASSERT_EQ(SIGALRM, signal_number);
}
TEST(time, timer_create_NULL) {
// A NULL sigevent* is equivalent to asking for SIGEV_SIGNAL for SIGALRM.
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, NULL, &timer_id));
timer_create_NULL_signal_handler_invocation_count = 0;
ScopedSignalHandler ssh(SIGALRM, timer_create_NULL_signal_handler);
ASSERT_EQ(0, timer_create_NULL_signal_handler_invocation_count);
SetTime(timer_id, 0, 1, 0, 0);
usleep(500000);
ASSERT_EQ(1, timer_create_NULL_signal_handler_invocation_count);
}
TEST(time, timer_create_EINVAL) {
clockid_t invalid_clock = 16;
// A SIGEV_SIGNAL timer is easy; the kernel does all that.
timer_t timer_id;
ASSERT_EQ(-1, timer_create(invalid_clock, NULL, &timer_id));
ASSERT_EQ(EINVAL, errno);
// A SIGEV_THREAD timer is more interesting because we have stuff to clean up.
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
ASSERT_EQ(-1, timer_create(invalid_clock, &se, &timer_id));
ASSERT_EQ(EINVAL, errno);
}
TEST(time, timer_delete_multiple) {
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, NULL, &timer_id));
ASSERT_EQ(0, timer_delete(timer_id));
ASSERT_EQ(-1, timer_delete(timer_id));
ASSERT_EQ(EINVAL, errno);
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
ASSERT_EQ(0, timer_delete(timer_id));
ASSERT_EQ(-1, timer_delete(timer_id));
ASSERT_EQ(EINVAL, errno);
}
TEST(time, timer_create_multiple) {
Counter counter1(Counter::CountNotifyFunction);
Counter counter2(Counter::CountNotifyFunction);
Counter counter3(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter1.Value());
ASSERT_EQ(0, counter2.Value());
ASSERT_EQ(0, counter3.Value());
counter2.SetTime(0, 500000000, 0, 0);
sleep(1);
EXPECT_EQ(0, counter1.Value());
EXPECT_EQ(1, counter2.Value());
EXPECT_EQ(0, counter3.Value());
}
// Test to verify that disarming a repeatable timer disables the callbacks.
TEST(time, timer_disarm_terminates) {
Counter counter(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 1, 0, 1);
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
counter.SetTime(0, 0, 0, 0);
// Add a sleep as the kernel may have pending events when the timer is disarmed.
usleep(500000);
int value = counter.Value();
usleep(500000);
// Verify the counter has not been incremented.
ASSERT_EQ(value, counter.Value());
}
// Test to verify that deleting a repeatable timer disables the callbacks.
TEST(time, timer_delete_terminates) {
Counter counter(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 1, 0, 1);
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
counter.DeleteTimer();
// Add a sleep as other threads may be calling the callback function when the timer is deleted.
usleep(500000);
int value = counter.Value();
usleep(500000);
// Verify the counter has not been incremented.
ASSERT_EQ(value, counter.Value());
}
struct TimerDeleteData {
timer_t timer_id;
pthread_t thread_id;
volatile bool complete;
};
static void TimerDeleteCallback(sigval_t value) {
TimerDeleteData* tdd = reinterpret_cast<TimerDeleteData*>(value.sival_ptr);
tdd->thread_id = pthread_self();
timer_delete(tdd->timer_id);
tdd->complete = true;
}
TEST(time, timer_delete_from_timer_thread) {
TimerDeleteData tdd;
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = TimerDeleteCallback;
se.sigev_value.sival_ptr = &tdd;
tdd.complete = false;
ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &tdd.timer_id));
itimerspec ts;
ts.it_value.tv_sec = 1;
ts.it_value.tv_nsec = 0;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ASSERT_EQ(0, timer_settime(tdd.timer_id, 0, &ts, NULL));
time_t cur_time = time(NULL);
while (!tdd.complete && (time(NULL) - cur_time) < 5);
ASSERT_TRUE(tdd.complete);
#if defined(__BIONIC__)
// Since bionic timers are implemented by creating a thread to handle the
// callback, verify that the thread actually completes.
cur_time = time(NULL);
while (pthread_detach(tdd.thread_id) != ESRCH && (time(NULL) - cur_time) < 5);
ASSERT_EQ(ESRCH, pthread_detach(tdd.thread_id));
#endif
}
TEST(time, clock_gettime) {
// Try to ensure that our vdso clock_gettime is working.
timespec ts1;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts1));
timespec ts2;
ASSERT_EQ(0, syscall(__NR_clock_gettime, CLOCK_MONOTONIC, &ts2));
// What's the difference between the two?
ts2.tv_sec -= ts1.tv_sec;
ts2.tv_nsec -= ts1.tv_nsec;
if (ts2.tv_nsec < 0) {
--ts2.tv_sec;
ts2.tv_nsec += NS_PER_S;
}
// Should be less than (a very generous, to try to avoid flakiness) 1000000ns.
ASSERT_EQ(0, ts2.tv_sec);
ASSERT_LT(ts2.tv_nsec, 1000000);
}
TEST(time, clock) {
// clock(3) is hard to test, but a 1s sleep should cost less than 1ms.
clock_t t0 = clock();
sleep(1);
clock_t t1 = clock();
ASSERT_LT(t1 - t0, CLOCKS_PER_SEC / 1000);
}
pid_t GetInvalidPid() {
FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
long pid_max;
fscanf(fp, "%ld", &pid_max);
pid_t invalid_pid = static_cast<pid_t>(pid_max + 1);
fclose(fp);
return invalid_pid;
}
TEST(time, clock_getcpuclockid) {
// For current process.
clockid_t clockid;
ASSERT_EQ(0, clock_getcpuclockid(getpid(), &clockid));
timespec ts;
ASSERT_EQ(0, clock_gettime(clockid, &ts));
// For parent process.
ASSERT_EQ(0, clock_getcpuclockid(getppid(), &clockid));
ASSERT_EQ(0, clock_gettime(clockid, &ts));
// For invalid process.
// We can't use -1 for invalid pid here, because clock_getcpuclockid() can't detect it.
errno = 0;
ASSERT_EQ(ESRCH, clock_getcpuclockid(GetInvalidPid(), &clockid));
ASSERT_EQ(0, errno);
}
TEST(time, clock_settime) {
errno = 0;
timespec ts;
ASSERT_EQ(-1, clock_settime(-1, &ts));
ASSERT_EQ(EINVAL, errno);
}
TEST(time, clock_nanosleep) {
timespec in;
timespec out;
ASSERT_EQ(EINVAL, clock_nanosleep(-1, 0, &in, &out));
}
TEST(time, clock_nanosleep_thread_cputime_id) {
timespec in;
in.tv_sec = 1;
in.tv_nsec = 0;
ASSERT_EQ(EINVAL, clock_nanosleep(CLOCK_THREAD_CPUTIME_ID, 0, &in, nullptr));
}