platform_bionic/libc/bionic/__libc_init_main_thread.cpp

167 lines
7 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "libc_init_common.h"
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
#include <async_safe/log.h>
#include "private/KernelArgumentBlock.h"
#include "private/bionic_arc4random.h"
#include "private/bionic_defs.h"
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
#include "private/bionic_elf_tls.h"
#include "private/bionic_globals.h"
#include "private/bionic_ssp.h"
#include "pthread_internal.h"
extern "C" pid_t __getpid();
extern "C" int __set_tid_address(int* tid_address);
// Declared in "private/bionic_ssp.h".
uintptr_t __stack_chk_guard = 0;
static pthread_internal_t main_thread;
// Setup for the main thread. For dynamic executables, this is called by the
// linker _before_ libc is mapped in memory. This means that all writes to
// globals from this function will apply to linker-private copies and will not
// be visible from libc later on.
//
// Note: this function creates a pthread_internal_t for the initial thread and
// stores the pointer in TLS, but does not add it to pthread's thread list. This
// has to be done later from libc itself (see __libc_init_common).
//
// This is in a file by itself because it needs to be built with
// -fno-stack-protector because it's responsible for setting up the main
// thread's TLS (which stack protector relies on). It's also built with
// -ffreestanding because the early init function runs in the linker before
// ifunc resolvers have run.
// Do enough setup to:
// - Let the dynamic linker invoke system calls (and access errno)
// - Ensure that TLS access functions (__get_{tls,thread}) never return NULL
// - Allow the stack protector to work (with a zero cookie)
// Avoid doing much more because, when this code is called within the dynamic
// linker, the linker binary hasn't been relocated yet, so certain kinds of code
// are hazardous, such as accessing non-hidden global variables or calling
// string.h functions.
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
extern "C" void __libc_init_main_thread_early(const KernelArgumentBlock& args,
bionic_tcb* temp_tcb) {
__libc_shared_globals()->auxv = args.auxv;
#if defined(__i386__)
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
__libc_init_sysinfo(); // uses AT_SYSINFO auxv entry
#endif
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
__init_tcb(temp_tcb, &main_thread);
__init_tcb_dtv(temp_tcb);
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
__set_tls(&temp_tcb->tls_slot(0));
main_thread.tid = __getpid();
main_thread.set_cached_pid(main_thread.tid);
main_thread.stack_top = reinterpret_cast<uintptr_t>(args.argv);
}
// This code is used both by each new pthread and the code that initializes the main thread.
void __init_tcb(bionic_tcb* tcb, pthread_internal_t* thread) {
#ifdef TLS_SLOT_SELF
// On x86, slot 0 must point to itself so code can read the thread pointer by
// loading %fs:0 or %gs:0.
tcb->tls_slot(TLS_SLOT_SELF) = &tcb->tls_slot(TLS_SLOT_SELF);
#endif
tcb->tls_slot(TLS_SLOT_THREAD_ID) = thread;
}
void __init_tcb_dtv(bionic_tcb* tcb) {
// Initialize the DTV slot to a statically-allocated empty DTV. The first
// access to a dynamic TLS variable allocates a new DTV.
static const TlsDtv zero_dtv = {};
__set_tcb_dtv(tcb, const_cast<TlsDtv*>(&zero_dtv));
}
// Finish initializing the main thread.
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
extern "C" void __libc_init_main_thread_late() {
__init_bionic_tls_ptrs(__get_bionic_tcb(), __allocate_temp_bionic_tls());
// Tell the kernel to clear our tid field when we exit, so we're like any other pthread.
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
// For threads created by pthread_create, this setup happens during the clone syscall (i.e.
// CLONE_CHILD_CLEARTID).
__set_tid_address(&main_thread.tid);
pthread_attr_init(&main_thread.attr);
// We don't want to explicitly set the main thread's scheduler attributes (http://b/68328561).
pthread_attr_setinheritsched(&main_thread.attr, PTHREAD_INHERIT_SCHED);
// The main thread has no guard page.
pthread_attr_setguardsize(&main_thread.attr, 0);
// User code should never see this; we'll compute it when asked.
pthread_attr_setstacksize(&main_thread.attr, 0);
// The TLS stack guard is set from the global, so ensure that we've initialized the global
// before we initialize the TLS. Dynamic executables will initialize their copy of the global
// stack protector from the one in the main thread's TLS.
__libc_safe_arc4random_buf(&__stack_chk_guard, sizeof(__stack_chk_guard));
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
__init_tcb_stack_guard(__get_bionic_tcb());
__init_thread(&main_thread);
__init_additional_stacks(&main_thread);
}
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
// Once all ELF modules are loaded, allocate the final copy of the main thread's
// static TLS memory.
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
extern "C" void __libc_init_main_thread_final() {
bionic_tcb* temp_tcb = __get_bionic_tcb();
bionic_tls* temp_tls = &__get_bionic_tls();
// Allocate the main thread's static TLS. (This mapping doesn't include a
// stack.)
ThreadMapping mapping = __allocate_thread_mapping(0, PTHREAD_GUARD_SIZE);
if (mapping.mmap_base == nullptr) {
async_safe_fatal("failed to mmap main thread static TLS: %s", strerror(errno));
}
const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
auto new_tcb = reinterpret_cast<bionic_tcb*>(mapping.static_tls + layout.offset_bionic_tcb());
auto new_tls = reinterpret_cast<bionic_tls*>(mapping.static_tls + layout.offset_bionic_tls());
__init_static_tls(mapping.static_tls);
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
new_tcb->copy_from_bootstrap(temp_tcb);
new_tls->copy_from_bootstrap(temp_tls);
__init_tcb(new_tcb, &main_thread);
__init_bionic_tls_ptrs(new_tcb, new_tls);
main_thread.mmap_base = mapping.mmap_base;
main_thread.mmap_size = mapping.mmap_size;
main_thread.mmap_base_unguarded = mapping.mmap_base_unguarded;
main_thread.mmap_size_unguarded = mapping.mmap_size_unguarded;
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
__set_tls(&new_tcb->tls_slot(0));
__set_stack_and_tls_vma_name(true);
Reorganize static TLS memory for ELF TLS For ELF TLS "local-exec" accesses, the static linker assumes that an executable's TLS segment is located at a statically-known offset from the thread pointer (i.e. "variant 1" for ARM and "variant 2" for x86). Because these layouts are incompatible, Bionic generally needs to allocate its TLS slots differently between different architectures. To allow per-architecture TLS slots: - Replace the TLS_SLOT_xxx enumerators with macros. New ARM slots are generally negative, while new x86 slots are generally positive. - Define a bionic_tcb struct that provides two things: - a void* raw_slots_storage[BIONIC_TLS_SLOTS] field - an inline accessor function: void*& tls_slot(size_t tpindex); For ELF TLS, it's necessary to allocate a temporary TCB (i.e. TLS slots), because the runtime linker doesn't know how large the static TLS area is until after it has loaded all of the initial solibs. To accommodate Golang, it's necessary to allocate the pthread keys at a fixed, small, positive offset from the thread pointer. This CL moves the pthread keys into bionic_tls, then allocates a single mapping per thread that looks like so: - stack guard - stack [omitted for main thread and with pthread_attr_setstack] - static TLS: - bionic_tcb [exec TLS will either precede or succeed the TCB] - bionic_tls [prefixed by the pthread keys] - [solib TLS segments will be placed here] - guard page As before, if the new mapping includes a stack, the pthread_internal_t is allocated on it. At startup, Bionic allocates a temporary bionic_tcb object on the stack, then allocates a temporary bionic_tls object using mmap. This mmap is delayed because the linker can't currently call async_safe_fatal() before relocating itself. Later, Bionic allocates a stack-less thread mapping for the main thread, and copies slots from the temporary TCB to the new TCB. (See *::copy_from_bootstrap methods.) Bug: http://b/78026329 Test: bionic unit tests Test: verify that a Golang app still works Test: verify that a Golang app crashes if bionic_{tls,tcb} are swapped Merged-In: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 Change-Id: I6543063752f4ec8ef6dc9c7f2a06ce2a18fc5af3 (cherry picked from commit 1e660b70da625fcbf1e43dfae09b7b4817fa1660)
2019-01-03 11:51:30 +01:00
__free_temp_bionic_tls(temp_tls);
}