platform_bionic/libc/bionic/ifaddrs.cpp

261 lines
10 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2015 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <ifaddrs.h>
#include <errno.h>
#include <linux/if_packet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "private/ErrnoRestorer.h"
#include "bionic_netlink.h"
// The public ifaddrs struct is full of pointers. Rather than track several
// different allocations, we use a maximally-sized structure with the public
// part at offset 0, and pointers into its hidden tail.
struct ifaddrs_storage {
// Must come first, so that `ifaddrs_storage` is-a `ifaddrs`.
ifaddrs ifa;
// The interface index, so we can match RTM_NEWADDR messages with
// earlier RTM_NEWLINK messages (to copy the interface flags).
int interface_index;
// Storage for the pointers in `ifa`.
sockaddr_storage addr;
sockaddr_storage netmask;
sockaddr_storage ifa_ifu;
char name[IFNAMSIZ + 1];
explicit ifaddrs_storage(ifaddrs** list) {
memset(this, 0, sizeof(*this));
// push_front onto `list`.
ifa.ifa_next = *list;
*list = reinterpret_cast<ifaddrs*>(this);
}
void SetAddress(int family, const void* data, size_t byteCount) {
// The kernel currently uses the order IFA_ADDRESS, IFA_LOCAL, IFA_BROADCAST
// in inet_fill_ifaddr, but let's not assume that will always be true...
if (ifa.ifa_addr == nullptr) {
// This is an IFA_ADDRESS and haven't seen an IFA_LOCAL yet, so assume this is the
// local address. SetLocalAddress will fix things if we later see an IFA_LOCAL.
ifa.ifa_addr = CopyAddress(family, data, byteCount, &addr);
} else {
// We already saw an IFA_LOCAL, which implies this is a destination address.
ifa.ifa_dstaddr = CopyAddress(family, data, byteCount, &ifa_ifu);
}
}
void SetBroadcastAddress(int family, const void* data, size_t byteCount) {
// ifa_broadaddr and ifa_dstaddr overlap in a union. Unfortunately, it's possible
// to have an interface with both. Keeping the last thing the kernel gives us seems
// to be glibc 2.19's behavior too, so our choice is being source compatible with
// badly-written code that assumes ifa_broadaddr and ifa_dstaddr are interchangeable
// or supporting interfaces with both addresses configured. My assumption is that
// bad code is more common than weird network interfaces...
ifa.ifa_broadaddr = CopyAddress(family, data, byteCount, &ifa_ifu);
}
void SetLocalAddress(int family, const void* data, size_t byteCount) {
// The kernel source says "for point-to-point IFA_ADDRESS is DESTINATION address,
// local address is supplied in IFA_LOCAL attribute".
// -- http://lxr.free-electrons.com/source/include/uapi/linux/if_addr.h#L17
// So copy any existing IFA_ADDRESS into ifa_dstaddr...
if (ifa.ifa_addr != nullptr) {
ifa.ifa_dstaddr = reinterpret_cast<sockaddr*>(memcpy(&ifa_ifu, &addr, sizeof(addr)));
}
// ...and then put this IFA_LOCAL into ifa_addr.
ifa.ifa_addr = CopyAddress(family, data, byteCount, &addr);
}
// Netlink gives us the prefix length as a bit count. We need to turn
// that into a BSD-compatible netmask represented by a sockaddr*.
void SetNetmask(int family, size_t prefix_length) {
// ...and work out the netmask from the prefix length.
netmask.ss_family = family;
uint8_t* dst = SockaddrBytes(family, &netmask);
memset(dst, 0xff, prefix_length / 8);
if ((prefix_length % 8) != 0) {
dst[prefix_length/8] = (0xff << (8 - (prefix_length % 8)));
}
ifa.ifa_netmask = reinterpret_cast<sockaddr*>(&netmask);
}
void SetPacketAttributes(int ifindex, unsigned short hatype, unsigned char halen) {
sockaddr_ll* sll = reinterpret_cast<sockaddr_ll*>(&addr);
sll->sll_ifindex = ifindex;
sll->sll_hatype = hatype;
sll->sll_halen = halen;
}
private:
sockaddr* CopyAddress(int family, const void* data, size_t byteCount, sockaddr_storage* ss) {
// Netlink gives us the address family in the header, and the
// sockaddr_in or sockaddr_in6 bytes as the payload. We need to
// stitch the two bits together into the sockaddr that's part of
// our portable interface.
ss->ss_family = family;
memcpy(SockaddrBytes(family, ss), data, byteCount);
// For IPv6 we might also have to set the scope id.
if (family == AF_INET6 && (IN6_IS_ADDR_LINKLOCAL(data) || IN6_IS_ADDR_MC_LINKLOCAL(data))) {
reinterpret_cast<sockaddr_in6*>(ss)->sin6_scope_id = interface_index;
}
return reinterpret_cast<sockaddr*>(ss);
}
// Returns a pointer to the first byte in the address data (which is
// stored in network byte order).
uint8_t* SockaddrBytes(int family, sockaddr_storage* ss) {
if (family == AF_INET) {
sockaddr_in* ss4 = reinterpret_cast<sockaddr_in*>(ss);
return reinterpret_cast<uint8_t*>(&ss4->sin_addr);
} else if (family == AF_INET6) {
sockaddr_in6* ss6 = reinterpret_cast<sockaddr_in6*>(ss);
return reinterpret_cast<uint8_t*>(&ss6->sin6_addr);
} else if (family == AF_PACKET) {
sockaddr_ll* sll = reinterpret_cast<sockaddr_ll*>(ss);
return reinterpret_cast<uint8_t*>(&sll->sll_addr);
}
return nullptr;
}
};
static void __getifaddrs_callback(void* context, nlmsghdr* hdr) {
ifaddrs** out = reinterpret_cast<ifaddrs**>(context);
if (hdr->nlmsg_type == RTM_NEWLINK) {
ifinfomsg* ifi = reinterpret_cast<ifinfomsg*>(NLMSG_DATA(hdr));
// Create a new ifaddr entry, and set the interface index and flags.
ifaddrs_storage* new_addr = new ifaddrs_storage(out);
new_addr->interface_index = ifi->ifi_index;
new_addr->ifa.ifa_flags = ifi->ifi_flags;
// Go through the various bits of information and find the name.
rtattr* rta = IFLA_RTA(ifi);
size_t rta_len = IFLA_PAYLOAD(hdr);
while (RTA_OK(rta, rta_len)) {
if (rta->rta_type == IFLA_ADDRESS) {
if (RTA_PAYLOAD(rta) < sizeof(new_addr->addr)) {
new_addr->SetAddress(AF_PACKET, RTA_DATA(rta), RTA_PAYLOAD(rta));
new_addr->SetPacketAttributes(ifi->ifi_index, ifi->ifi_type, RTA_PAYLOAD(rta));
}
} else if (rta->rta_type == IFLA_BROADCAST) {
if (RTA_PAYLOAD(rta) < sizeof(new_addr->ifa_ifu)) {
new_addr->SetBroadcastAddress(AF_PACKET, RTA_DATA(rta), RTA_PAYLOAD(rta));
new_addr->SetPacketAttributes(ifi->ifi_index, ifi->ifi_type, RTA_PAYLOAD(rta));
}
} else if (rta->rta_type == IFLA_IFNAME) {
if (RTA_PAYLOAD(rta) < sizeof(new_addr->name)) {
memcpy(new_addr->name, RTA_DATA(rta), RTA_PAYLOAD(rta));
new_addr->ifa.ifa_name = new_addr->name;
}
}
rta = RTA_NEXT(rta, rta_len);
}
} else if (hdr->nlmsg_type == RTM_NEWADDR) {
ifaddrmsg* msg = reinterpret_cast<ifaddrmsg*>(NLMSG_DATA(hdr));
// We should already know about this from an RTM_NEWLINK message.
const ifaddrs_storage* addr = reinterpret_cast<const ifaddrs_storage*>(*out);
while (addr != nullptr && addr->interface_index != static_cast<int>(msg->ifa_index)) {
addr = reinterpret_cast<const ifaddrs_storage*>(addr->ifa.ifa_next);
}
// If this is an unknown interface, ignore whatever we're being told about it.
if (addr == nullptr) return;
// Create a new ifaddr entry and copy what we already know.
ifaddrs_storage* new_addr = new ifaddrs_storage(out);
// We can just copy the name rather than look for IFA_LABEL.
strcpy(new_addr->name, addr->name);
new_addr->ifa.ifa_name = new_addr->name;
new_addr->ifa.ifa_flags = addr->ifa.ifa_flags;
new_addr->interface_index = addr->interface_index;
// Go through the various bits of information and find the address
// and any broadcast/destination address.
rtattr* rta = IFA_RTA(msg);
size_t rta_len = IFA_PAYLOAD(hdr);
while (RTA_OK(rta, rta_len)) {
if (rta->rta_type == IFA_ADDRESS) {
if (msg->ifa_family == AF_INET || msg->ifa_family == AF_INET6) {
new_addr->SetAddress(msg->ifa_family, RTA_DATA(rta), RTA_PAYLOAD(rta));
new_addr->SetNetmask(msg->ifa_family, msg->ifa_prefixlen);
}
} else if (rta->rta_type == IFA_BROADCAST) {
if (msg->ifa_family == AF_INET) {
new_addr->SetBroadcastAddress(msg->ifa_family, RTA_DATA(rta), RTA_PAYLOAD(rta));
}
} else if (rta->rta_type == IFA_LOCAL) {
if (msg->ifa_family == AF_INET || msg->ifa_family == AF_INET6) {
new_addr->SetLocalAddress(msg->ifa_family, RTA_DATA(rta), RTA_PAYLOAD(rta));
}
}
rta = RTA_NEXT(rta, rta_len);
}
}
}
int getifaddrs(ifaddrs** out) {
// We construct the result directly into `out`, so terminate the list.
*out = nullptr;
// Open the netlink socket and ask for all the links and addresses.
NetlinkConnection nc;
bool okay = nc.SendRequest(RTM_GETLINK) && nc.ReadResponses(__getifaddrs_callback, out) &&
nc.SendRequest(RTM_GETADDR) && nc.ReadResponses(__getifaddrs_callback, out);
if (!okay) {
freeifaddrs(*out);
// Ensure that callers crash if they forget to check for success.
*out = nullptr;
return -1;
}
return 0;
}
void freeifaddrs(ifaddrs* list) {
while (list != nullptr) {
ifaddrs* current = list;
list = list->ifa_next;
free(current);
}
}