platform_bionic/libc/bionic/pthread_attr.cpp

276 lines
8.6 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <pthread.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <sys/resource.h>
#include <unistd.h>
#include <async_safe/log.h>
#include "private/bionic_defs.h"
#include "private/ErrnoRestorer.h"
#include "pthread_internal.h"
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_init(pthread_attr_t* attr) {
attr->flags = 0;
attr->stack_base = nullptr;
attr->stack_size = PTHREAD_STACK_SIZE_DEFAULT;
attr->guard_size = PTHREAD_GUARD_SIZE;
attr->sched_policy = SCHED_NORMAL;
attr->sched_priority = 0;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_destroy(pthread_attr_t* attr) {
memset(attr, 0x42, sizeof(pthread_attr_t));
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
int pthread_attr_setinheritsched(pthread_attr_t* attr, int flag) {
if (flag == PTHREAD_EXPLICIT_SCHED) {
attr->flags &= ~PTHREAD_ATTR_FLAG_INHERIT;
attr->flags |= PTHREAD_ATTR_FLAG_EXPLICIT;
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
} else if (flag == PTHREAD_INHERIT_SCHED) {
attr->flags |= PTHREAD_ATTR_FLAG_INHERIT;
attr->flags &= ~PTHREAD_ATTR_FLAG_EXPLICIT;
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
} else {
return EINVAL;
}
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
int pthread_attr_getinheritsched(const pthread_attr_t* attr, int* flag) {
if ((attr->flags & PTHREAD_ATTR_FLAG_INHERIT) != 0) {
*flag = PTHREAD_INHERIT_SCHED;
} else if ((attr->flags & PTHREAD_ATTR_FLAG_EXPLICIT) != 0) {
*flag = PTHREAD_EXPLICIT_SCHED;
} else {
// Historical behavior before P, when pthread_attr_setinheritsched was added.
*flag = (attr->sched_policy != SCHED_NORMAL) ? PTHREAD_EXPLICIT_SCHED : PTHREAD_INHERIT_SCHED;
}
Implement pthread_attr_getinheritsched/pthread_attr_setinheritsched. Historically, Android defaulted to EXPLICIT but with a special case because SCHED_NORMAL/priority 0 was awkward. Because the code couldn't actually tell whether SCHED_NORMAL/priority 0 was a genuine attempt to explicitly set those attributes (because the parent thread is SCHED_FIFO, say) or just because the pthread_attr_t was left at its defaults. Now we support INHERIT, we could call sched_getscheduler to see whether we actually need to call sched_setscheduler, but since the major cost is the fixed syscall overhead, we may as well just conservatively call sched_setscheduler and let the kernel decide whether it's a no-op. (Especially because we'd then have to add both sched_getscheduler and sched_setscheduler to any seccomp filter.) Platform code (or app code that only needs to support >= P) can actually add a call to pthread_attr_setinheritsched to say that they just want to inherit (if they know that none of their threads actually mess with scheduler attributes at all), which will save them a sched_setscheduler call except in the doubly-special case of SCHED_RESET_ON_FORK (which we do handle). An alternative would be "make pthread_attr_setschedparams and pthread_attr_setschedprio set EXPLICIT and change the platform default to INHERIT", but even though I can only think of weird pathological examples where anyone would notice that change, that behavior -- of pthread_attr_setschedparams/pthread_attr_setschedprio overriding an earlier call to pthread_attr_setinheritsched -- isn't allowed by POSIX (whereas defaulting to EXPLICIT is). If we have a lot of trouble with this change in the app compatibility testing phase, though, we'll want to reconsider this decision! -*- This change also removes a comment about setting the scheduler attributes in main_thread because we'd have to actually keep them up to date, and it's not clear that doing so would be worth the trouble. Also make async_safe_format_log preserve errno so we don't have to be so careful around it. Bug: http://b/67471710 Test: ran tests Change-Id: Idd026c4ce78a536656adcb57aa2e7b2c616eeddf
2017-10-18 00:34:41 +02:00
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_setdetachstate(pthread_attr_t* attr, int state) {
if (state == PTHREAD_CREATE_DETACHED) {
attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
} else if (state == PTHREAD_CREATE_JOINABLE) {
attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
} else {
return EINVAL;
}
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_getdetachstate(const pthread_attr_t* attr, int* state) {
*state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED) ? PTHREAD_CREATE_DETACHED : PTHREAD_CREATE_JOINABLE;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_setschedpolicy(pthread_attr_t* attr, int policy) {
attr->sched_policy = policy;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_getschedpolicy(const pthread_attr_t* attr, int* policy) {
*policy = attr->sched_policy;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_setschedparam(pthread_attr_t* attr, const sched_param* param) {
attr->sched_priority = param->sched_priority;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_getschedparam(const pthread_attr_t* attr, sched_param* param) {
param->sched_priority = attr->sched_priority;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_setstacksize(pthread_attr_t* attr, size_t stack_size) {
if (stack_size < PTHREAD_STACK_MIN) {
return EINVAL;
}
attr->stack_size = stack_size;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_getstacksize(const pthread_attr_t* attr, size_t* stack_size) {
void* unused;
return pthread_attr_getstack(attr, &unused, stack_size);
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_setstack(pthread_attr_t* attr, void* stack_base, size_t stack_size) {
if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
return EINVAL;
}
if (reinterpret_cast<uintptr_t>(stack_base) & (PAGE_SIZE - 1)) {
return EINVAL;
}
attr->stack_base = stack_base;
attr->stack_size = stack_size;
return 0;
}
static uintptr_t __get_main_stack_startstack() {
FILE* fp = fopen("/proc/self/stat", "re");
if (fp == nullptr) {
async_safe_fatal("couldn't open /proc/self/stat: %s", strerror(errno));
}
char line[BUFSIZ];
if (fgets(line, sizeof(line), fp) == nullptr) {
async_safe_fatal("couldn't read /proc/self/stat: %s", strerror(errno));
}
fclose(fp);
// See man 5 proc. There's no reason comm can't contain ' ' or ')',
// so we search backwards for the end of it. We're looking for this field:
//
// startstack %lu (28) The address of the start (i.e., bottom) of the stack.
uintptr_t startstack = 0;
const char* end_of_comm = strrchr(line, ')');
if (sscanf(end_of_comm + 1, " %*c "
"%*d %*d %*d %*d %*d "
"%*u %*u %*u %*u %*u %*u %*u "
"%*d %*d %*d %*d %*d %*d "
"%*u %*u %*d %*u %*u %*u %" SCNuPTR, &startstack) != 1) {
async_safe_fatal("couldn't parse /proc/self/stat");
}
return startstack;
}
static int __pthread_attr_getstack_main_thread(void** stack_base, size_t* stack_size) {
ErrnoRestorer errno_restorer;
rlimit stack_limit;
if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
return errno;
}
// If the current RLIMIT_STACK is RLIM_INFINITY, only admit to an 8MiB stack
// in case callers such as ART take infinity too literally.
if (stack_limit.rlim_cur == RLIM_INFINITY) {
stack_limit.rlim_cur = 8 * 1024 * 1024;
}
// Ask the kernel where our main thread's stack started.
uintptr_t startstack = __get_main_stack_startstack();
// Hunt for the region that contains that address.
FILE* fp = fopen("/proc/self/maps", "re");
if (fp == nullptr) {
async_safe_fatal("couldn't open /proc/self/maps: %s", strerror(errno));
}
char line[BUFSIZ];
while (fgets(line, sizeof(line), fp) != nullptr) {
uintptr_t lo, hi;
if (sscanf(line, "%" SCNxPTR "-%" SCNxPTR, &lo, &hi) == 2) {
if (lo <= startstack && startstack <= hi) {
*stack_size = stack_limit.rlim_cur;
*stack_base = reinterpret_cast<void*>(hi - *stack_size);
fclose(fp);
return 0;
}
}
}
async_safe_fatal("Stack not found in /proc/self/maps");
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_getstack(const pthread_attr_t* attr, void** stack_base, size_t* stack_size) {
*stack_base = attr->stack_base;
*stack_size = attr->stack_size;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_setguardsize(pthread_attr_t* attr, size_t guard_size) {
attr->guard_size = guard_size;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_getguardsize(const pthread_attr_t* attr, size_t* guard_size) {
*guard_size = attr->guard_size;
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_getattr_np(pthread_t t, pthread_attr_t* attr) {
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(t);
*attr = thread->attr;
// We prefer reading join_state here to setting thread->attr.flags in pthread_detach.
// Because data race exists in the latter case.
if (atomic_load(&thread->join_state) == THREAD_DETACHED) {
attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
}
// The main thread's stack information is not stored in thread->attr, and we need to
// collect that at runtime.
if (thread->tid == getpid()) {
return __pthread_attr_getstack_main_thread(&attr->stack_base, &attr->stack_size);
}
return 0;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_setscope(pthread_attr_t*, int scope) {
if (scope == PTHREAD_SCOPE_SYSTEM) {
return 0;
}
if (scope == PTHREAD_SCOPE_PROCESS) {
return ENOTSUP;
}
return EINVAL;
}
__BIONIC_WEAK_FOR_NATIVE_BRIDGE
int pthread_attr_getscope(const pthread_attr_t*, int* scope) {
*scope = PTHREAD_SCOPE_SYSTEM;
return 0;
}