platform_bionic/tests/math_data_test.h

286 lines
9.3 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <fenv.h>
template <typename RT, typename T1>
struct data_1_1_t {
RT expected;
T1 input;
};
template <typename T1>
struct data_int_1_t {
int expected;
T1 input;
};
template <typename T1>
struct data_long_1_t {
long expected;
T1 input;
};
template <typename T1>
struct data_llong_1_t {
long long expected;
T1 input;
};
template <typename RT, typename T1, typename T2>
struct data_1_2_t {
RT expected;
T1 input1;
T2 input2;
};
template <typename RT1, typename RT2, typename T>
struct data_2_1_t {
RT1 expected1;
RT2 expected2;
T input;
};
template <typename RT1, typename T>
struct data_1_int_1_t {
RT1 expected1;
int expected2;
T input;
};
template <typename RT1, typename T1, typename T2>
struct data_1_int_2_t {
RT1 expected1;
int expected2;
T1 input1;
T2 input2;
};
template <typename RT, typename T1, typename T2, typename T3>
struct data_1_3_t {
RT expected;
T1 input1;
T2 input2;
T3 input3;
};
template <typename T> union fp_u;
template <> union fp_u<float> {
float value;
struct {
unsigned frac:23;
unsigned exp:8;
unsigned sign:1;
} bits;
uint32_t sign_magnitude;
};
template <> union fp_u<double> {
double value;
struct {
unsigned fracl;
unsigned frach:20;
unsigned exp:11;
unsigned sign:1;
} bits;
uint64_t sign_magnitude;
};
// TODO: long double.
template <typename T>
static inline auto SignAndMagnitudeToBiased(const T& value) -> decltype(fp_u<T>::sign_magnitude) {
fp_u<T> u;
u.value = value;
if (u.bits.sign) {
return ~u.sign_magnitude + 1;
} else {
u.bits.sign = 1;
return u.sign_magnitude;
}
}
// Based on the existing googletest implementation, which uses a fixed 4 ulp bound.
template <typename T>
size_t UlpDistance(T lhs, T rhs) {
const auto biased1 = SignAndMagnitudeToBiased(lhs);
const auto biased2 = SignAndMagnitudeToBiased(rhs);
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
}
template <size_t ULP, typename T>
struct FpUlpEq {
::testing::AssertionResult operator()(const char* /* expected_expression */,
const char* /* actual_expression */,
T expected,
T actual) {
if (!isnan(expected) && !isnan(actual) && UlpDistance(expected, actual) <= ULP) {
return ::testing::AssertionSuccess();
}
// Output the actual and expected values as hex floating point.
char expected_str[64];
char actual_str[64];
snprintf(expected_str, sizeof(expected_str), "%a", expected);
snprintf(actual_str, sizeof(actual_str), "%a", actual);
return ::testing::AssertionFailure()
<< "expected (" << expected_str << ") != actual (" << actual_str << ")";
}
};
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the result is within ULP ulps of the expected value.
// For testing a (double) -> double function like sin(3).
template <size_t ULP, typename RT, typename T, size_t N>
void DoMathDataTest(data_1_1_t<RT, T> (&data)[N], RT f(T)) {
fesetenv(FE_DFL_ENV);
FpUlpEq<ULP, RT> predicate;
for (size_t i = 0; i < N; ++i) {
EXPECT_PRED_FORMAT2(predicate,
data[i].expected, f(data[i].input)) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the result is within ULP ulps of the expected value.
// For testing a (double) -> int function like ilogb(3).
template <size_t ULP, typename T, size_t N>
void DoMathDataTest(data_int_1_t<T> (&data)[N], int f(T)) {
fesetenv(FE_DFL_ENV);
for (size_t i = 0; i < N; ++i) {
EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the result is within ULP ulps of the expected value.
// For testing a (double) -> long int function like lrint(3).
template <size_t ULP, typename T, size_t N>
void DoMathDataTest(data_long_1_t<T> (&data)[N], long f(T)) {
fesetenv(FE_DFL_ENV);
for (size_t i = 0; i < N; ++i) {
EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the result is within ULP ulps of the expected value.
// For testing a (double) -> long long int function like llrint(3).
template <size_t ULP, typename T, size_t N>
void DoMathDataTest(data_llong_1_t<T> (&data)[N], long long f(T)) {
fesetenv(FE_DFL_ENV);
for (size_t i = 0; i < N; ++i) {
EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the pairs of input values
// and asserting that the result is within ULP ulps of the expected value.
// For testing a (double, double) -> double function like pow(3).
template <size_t ULP, typename RT, typename T1, typename T2, size_t N>
void DoMathDataTest(data_1_2_t<RT, T1, T2> (&data)[N], RT f(T1, T2)) {
fesetenv(FE_DFL_ENV);
FpUlpEq<ULP, RT> predicate;
for (size_t i = 0; i < N; ++i) {
EXPECT_PRED_FORMAT2(predicate,
data[i].expected, f(data[i].input1, data[i].input2)) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the results are within ULP ulps of the expected values.
// For testing a (double, double*, double*) -> void function like sincos(3).
template <size_t ULP, typename RT1, typename RT2, typename T1, size_t N>
void DoMathDataTest(data_2_1_t<RT1, RT2, T1> (&data)[N], void f(T1, RT1*, RT2*)) {
fesetenv(FE_DFL_ENV);
FpUlpEq<ULP, RT1> predicate1;
FpUlpEq<ULP, RT2> predicate2;
for (size_t i = 0; i < N; ++i) {
RT1 out1;
RT2 out2;
f(data[i].input, &out1, &out2);
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
EXPECT_PRED_FORMAT2(predicate2, data[i].expected2, out2) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the results are within ULP ulps of the expected values.
// For testing a (double, double*) -> double function like modf(3).
template <size_t ULP, typename RT1, typename RT2, typename T1, size_t N>
void DoMathDataTest(data_2_1_t<RT1, RT2, T1> (&data)[N], RT1 f(T1, RT2*)) {
fesetenv(FE_DFL_ENV);
FpUlpEq<ULP, RT1> predicate1;
FpUlpEq<ULP, RT2> predicate2;
for (size_t i = 0; i < N; ++i) {
RT1 out1;
RT2 out2;
out1 = f(data[i].input, &out2);
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
EXPECT_PRED_FORMAT2(predicate2, data[i].expected2, out2) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the results are within ULP ulps of the expected values.
// For testing a (double, int*) -> double function like frexp(3).
template <size_t ULP, typename RT1, typename T1, size_t N>
void DoMathDataTest(data_1_int_1_t<RT1, T1> (&data)[N], RT1 f(T1, int*)) {
fesetenv(FE_DFL_ENV);
FpUlpEq<ULP, RT1> predicate1;
for (size_t i = 0; i < N; ++i) {
RT1 out1;
int out2;
out1 = f(data[i].input, &out2);
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
EXPECT_EQ(data[i].expected2, out2) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the input values
// and asserting that the results are within ULP ulps of the expected values.
// For testing a (double, double, int*) -> double function like remquo(3).
template <size_t ULP, typename RT1, typename T1, typename T2, size_t N>
void DoMathDataTest(data_1_int_2_t<RT1, T1, T2> (&data)[N], RT1 f(T1, T2, int*)) {
fesetenv(FE_DFL_ENV);
FpUlpEq<ULP, RT1> predicate1;
for (size_t i = 0; i < N; ++i) {
RT1 out1;
int out2;
out1 = f(data[i].input1, data[i].input2, &out2);
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
EXPECT_EQ(data[i].expected2, out2) << "Failed on element " << i;
}
}
// Runs through the array 'data' applying 'f' to each of the pairs of input values
// and asserting that the result is within ULP ulps of the expected value.
// For testing a (double, double, double) -> double function like fma(3).
template <size_t ULP, typename RT, typename T1, typename T2, typename T3, size_t N>
void DoMathDataTest(data_1_3_t<RT, T1, T2, T3> (&data)[N], RT f(T1, T2, T3)) {
fesetenv(FE_DFL_ENV);
FpUlpEq<ULP, RT> predicate;
for (size_t i = 0; i < N; ++i) {
EXPECT_PRED_FORMAT2(predicate,
data[i].expected, f(data[i].input1, data[i].input2, data[i].input3)) << "Failed on element " << i;
}
}