Merge "libc: import ARM strcmp from newlib"
am: b43f0b7993
Change-Id: Ia2107c80513f244a246e5c6879f75fd5521487c3
This commit is contained in:
commit
68bf5131e0
6 changed files with 441 additions and 1348 deletions
|
@ -790,13 +790,11 @@ cc_library_static {
|
|||
"arch-arm/cortex-a9/bionic/memset.S",
|
||||
"arch-arm/cortex-a9/bionic/stpcpy.S",
|
||||
"arch-arm/cortex-a9/bionic/strcat.S",
|
||||
"arch-arm/cortex-a9/bionic/strcmp.S",
|
||||
"arch-arm/cortex-a9/bionic/strcpy.S",
|
||||
"arch-arm/cortex-a9/bionic/strlen.S",
|
||||
|
||||
"arch-arm/krait/bionic/memcpy.S",
|
||||
"arch-arm/krait/bionic/memset.S",
|
||||
"arch-arm/krait/bionic/strcmp.S",
|
||||
|
||||
"arch-arm/cortex-a53/bionic/memcpy.S",
|
||||
|
||||
|
|
28
libc/NOTICE
28
libc/NOTICE
|
@ -5330,6 +5330,34 @@ Copyright (c) 2012-2013, Linaro Limited
|
|||
|
||||
-------------------------------------------------------------------
|
||||
|
||||
Copyright (c) 2012-2014 ARM Ltd
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
3. The name of the company may not be used to endorse or promote
|
||||
products derived from this software without specific prior written
|
||||
permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||||
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
|
||||
Copyright (c) 2013
|
||||
MIPS Technologies, Inc., California.
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2013 ARM Ltd
|
||||
* Copyright (c) 2012-2014 ARM Ltd
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
|
@ -29,9 +29,9 @@
|
|||
#include <private/bionic_asm.h>
|
||||
|
||||
#ifdef __ARMEB__
|
||||
#define S2LOMEM lsl
|
||||
#define S2LOMEMEQ lsleq
|
||||
#define S2HIMEM lsr
|
||||
#define S2LO lsl
|
||||
#define S2LOEQ lsleq
|
||||
#define S2HI lsr
|
||||
#define MSB 0x000000ff
|
||||
#define LSB 0xff000000
|
||||
#define BYTE0_OFFSET 24
|
||||
|
@ -39,9 +39,9 @@
|
|||
#define BYTE2_OFFSET 8
|
||||
#define BYTE3_OFFSET 0
|
||||
#else /* not __ARMEB__ */
|
||||
#define S2LOMEM lsr
|
||||
#define S2LOMEMEQ lsreq
|
||||
#define S2HIMEM lsl
|
||||
#define S2LO lsr
|
||||
#define S2LOEQ lsreq
|
||||
#define S2HI lsl
|
||||
#define BYTE0_OFFSET 0
|
||||
#define BYTE1_OFFSET 8
|
||||
#define BYTE2_OFFSET 16
|
||||
|
@ -50,330 +50,446 @@
|
|||
#define LSB 0x000000ff
|
||||
#endif /* not __ARMEB__ */
|
||||
|
||||
.syntax unified
|
||||
/* Parameters and result. */
|
||||
#define src1 r0
|
||||
#define src2 r1
|
||||
#define result r0 /* Overlaps src1. */
|
||||
|
||||
#if defined (__thumb__)
|
||||
.thumb
|
||||
.thumb_func
|
||||
#endif
|
||||
/* Internal variables. */
|
||||
#define tmp1 r4
|
||||
#define tmp2 r5
|
||||
#define const_m1 r12
|
||||
|
||||
/* Additional internal variables for 64-bit aligned data. */
|
||||
#define data1a r2
|
||||
#define data1b r3
|
||||
#define data2a r6
|
||||
#define data2b r7
|
||||
#define syndrome_a tmp1
|
||||
#define syndrome_b tmp2
|
||||
|
||||
/* Additional internal variables for 32-bit aligned data. */
|
||||
#define data1 r2
|
||||
#define data2 r3
|
||||
#define syndrome tmp2
|
||||
|
||||
/* Implementation of strcmp for ARMv7 when DSP instructions are
|
||||
available. Use ldrd to support wider loads, provided the data
|
||||
is sufficiently aligned. Use saturating arithmetic to optimize
|
||||
the compares. */
|
||||
|
||||
/* Build Options:
|
||||
STRCMP_NO_PRECHECK: Don't run a quick pre-check of the first
|
||||
byte in the string. If comparing completely random strings
|
||||
the pre-check will save time, since there is a very high
|
||||
probability of a mismatch in the first character: we save
|
||||
significant overhead if this is the common case. However,
|
||||
if strings are likely to be identical (eg because we're
|
||||
verifying a hit in a hash table), then this check is largely
|
||||
redundant. */
|
||||
|
||||
|
||||
.syntax unified
|
||||
.thumb
|
||||
|
||||
// To avoid warning about deprecated instructions, add an explicit
|
||||
// arch. The code generated is exactly the same.
|
||||
.arch armv7-a
|
||||
|
||||
/* Macro to compute and return the result value for word-aligned
|
||||
cases. */
|
||||
.macro strcmp_epilogue_aligned synd d1 d2 restore_r6
|
||||
#ifdef __ARM_BIG_ENDIAN
|
||||
/* If data1 contains a zero byte, then syndrome will contain a 1 in
|
||||
bit 7 of that byte. Otherwise, the highest set bit in the
|
||||
syndrome will highlight the first different bit. It is therefore
|
||||
sufficient to extract the eight bits starting with the syndrome
|
||||
bit. */
|
||||
clz tmp1, \synd
|
||||
lsl r1, \d2, tmp1
|
||||
.if \restore_r6
|
||||
ldrd r6, r7, [sp, #8]
|
||||
.endif
|
||||
.cfi_restore 6
|
||||
.cfi_restore 7
|
||||
lsl \d1, \d1, tmp1
|
||||
.cfi_remember_state
|
||||
lsr result, \d1, #24
|
||||
ldrd r4, r5, [sp], #16
|
||||
.cfi_restore 4
|
||||
.cfi_restore 5
|
||||
sub result, result, r1, lsr #24
|
||||
bx lr
|
||||
#else
|
||||
/* To use the big-endian trick we'd have to reverse all three words.
|
||||
that's slower than this approach. */
|
||||
rev \synd, \synd
|
||||
clz tmp1, \synd
|
||||
bic tmp1, tmp1, #7
|
||||
lsr r1, \d2, tmp1
|
||||
.cfi_remember_state
|
||||
.if \restore_r6
|
||||
ldrd r6, r7, [sp, #8]
|
||||
.endif
|
||||
.cfi_restore 6
|
||||
.cfi_restore 7
|
||||
lsr \d1, \d1, tmp1
|
||||
and result, \d1, #255
|
||||
and r1, r1, #255
|
||||
ldrd r4, r5, [sp], #16
|
||||
.cfi_restore 4
|
||||
.cfi_restore 5
|
||||
sub result, result, r1
|
||||
|
||||
bx lr
|
||||
#endif
|
||||
.endm
|
||||
|
||||
.text
|
||||
.p2align 5
|
||||
.Lstrcmp_start_addr:
|
||||
#ifndef STRCMP_NO_PRECHECK
|
||||
.Lfastpath_exit:
|
||||
sub r0, r2, r3
|
||||
bx lr
|
||||
nop
|
||||
#endif
|
||||
|
||||
ENTRY(strcmp_a15)
|
||||
/* Use LDRD whenever possible. */
|
||||
#ifndef STRCMP_NO_PRECHECK
|
||||
ldrb r2, [src1]
|
||||
ldrb r3, [src2]
|
||||
cmp r2, #1
|
||||
it cs
|
||||
cmpcs r2, r3
|
||||
bne .Lfastpath_exit
|
||||
#endif
|
||||
.cfi_sections .debug_frame
|
||||
strd r4, r5, [sp, #-16]!
|
||||
.cfi_def_cfa_offset 16
|
||||
.cfi_offset 4, -16
|
||||
.cfi_offset 5, -12
|
||||
orr tmp1, src1, src2
|
||||
strd r6, r7, [sp, #8]
|
||||
.cfi_offset 6, -8
|
||||
.cfi_offset 7, -4
|
||||
mvn const_m1, #0
|
||||
lsl r2, tmp1, #29
|
||||
cbz r2, .Lloop_aligned8
|
||||
|
||||
/* The main thing to look out for when comparing large blocks is that
|
||||
the loads do not cross a page boundary when loading past the index
|
||||
of the byte with the first difference or the first string-terminator.
|
||||
.Lnot_aligned:
|
||||
eor tmp1, src1, src2
|
||||
tst tmp1, #7
|
||||
bne .Lmisaligned8
|
||||
|
||||
For example, if the strings are identical and the string-terminator
|
||||
is at index k, byte by byte comparison will not load beyond address
|
||||
s1+k and s2+k; word by word comparison may load up to 3 bytes beyond
|
||||
k; double word - up to 7 bytes. If the load of these bytes crosses
|
||||
a page boundary, it might cause a memory fault (if the page is not mapped)
|
||||
that would not have happened in byte by byte comparison.
|
||||
/* Deal with mutual misalignment by aligning downwards and then
|
||||
masking off the unwanted loaded data to prevent a difference. */
|
||||
and tmp1, src1, #7
|
||||
bic src1, src1, #7
|
||||
and tmp2, tmp1, #3
|
||||
bic src2, src2, #7
|
||||
lsl tmp2, tmp2, #3 /* Bytes -> bits. */
|
||||
ldrd data1a, data1b, [src1], #16
|
||||
tst tmp1, #4
|
||||
ldrd data2a, data2b, [src2], #16
|
||||
/* In thumb code we can't use MVN with a register shift, but
|
||||
we do have ORN. */
|
||||
S2HI tmp1, const_m1, tmp2
|
||||
orn data1a, data1a, tmp1
|
||||
orn data2a, data2a, tmp1
|
||||
beq .Lstart_realigned8
|
||||
orn data1b, data1b, tmp1
|
||||
mov data1a, const_m1
|
||||
orn data2b, data2b, tmp1
|
||||
mov data2a, const_m1
|
||||
b .Lstart_realigned8
|
||||
|
||||
If an address is (double) word aligned, then a load of a (double) word
|
||||
from that address will not cross a page boundary.
|
||||
Therefore, the algorithm below considers word and double-word alignment
|
||||
of strings separately. */
|
||||
/* Unwind the inner loop by a factor of 2, giving 16 bytes per
|
||||
pass. */
|
||||
.p2align 5,,12 /* Don't start in the tail bytes of a cache line. */
|
||||
.p2align 2 /* Always word aligned. */
|
||||
.Lloop_aligned8:
|
||||
ldrd data1a, data1b, [src1], #16
|
||||
ldrd data2a, data2b, [src2], #16
|
||||
.Lstart_realigned8:
|
||||
uadd8 syndrome_b, data1a, const_m1 /* Only want GE bits, */
|
||||
eor syndrome_a, data1a, data2a
|
||||
sel syndrome_a, syndrome_a, const_m1
|
||||
cbnz syndrome_a, .Ldiff_in_a
|
||||
uadd8 syndrome_b, data1b, const_m1 /* Only want GE bits. */
|
||||
eor syndrome_b, data1b, data2b
|
||||
sel syndrome_b, syndrome_b, const_m1
|
||||
cbnz syndrome_b, .Ldiff_in_b
|
||||
|
||||
/* High-level description of the algorithm.
|
||||
ldrd data1a, data1b, [src1, #-8]
|
||||
ldrd data2a, data2b, [src2, #-8]
|
||||
uadd8 syndrome_b, data1a, const_m1 /* Only want GE bits, */
|
||||
eor syndrome_a, data1a, data2a
|
||||
sel syndrome_a, syndrome_a, const_m1
|
||||
uadd8 syndrome_b, data1b, const_m1 /* Only want GE bits. */
|
||||
eor syndrome_b, data1b, data2b
|
||||
sel syndrome_b, syndrome_b, const_m1
|
||||
/* Can't use CBZ for backwards branch. */
|
||||
orrs syndrome_b, syndrome_b, syndrome_a /* Only need if s_a == 0 */
|
||||
beq .Lloop_aligned8
|
||||
|
||||
* The fast path: if both strings are double-word aligned,
|
||||
use LDRD to load two words from each string in every loop iteration.
|
||||
* If the strings have the same offset from a word boundary,
|
||||
use LDRB to load and compare byte by byte until
|
||||
the first string is aligned to a word boundary (at most 3 bytes).
|
||||
This is optimized for quick return on short unaligned strings.
|
||||
* If the strings have the same offset from a double-word boundary,
|
||||
use LDRD to load two words from each string in every loop iteration, as in the fast path.
|
||||
* If the strings do not have the same offset from a double-word boundary,
|
||||
load a word from the second string before the loop to initialize the queue.
|
||||
Use LDRD to load two words from every string in every loop iteration.
|
||||
Inside the loop, load the second word from the second string only after comparing
|
||||
the first word, using the queued value, to guarantee safety across page boundaries.
|
||||
* If the strings do not have the same offset from a word boundary,
|
||||
use LDR and a shift queue. Order of loads and comparisons matters,
|
||||
similarly to the previous case.
|
||||
.Ldiff_found:
|
||||
cbnz syndrome_a, .Ldiff_in_a
|
||||
|
||||
* Use UADD8 and SEL to compare words, and use REV and CLZ to compute the return value.
|
||||
* The only difference between ARM and Thumb modes is the use of CBZ instruction.
|
||||
* The only difference between big and little endian is the use of REV in little endian
|
||||
to compute the return value, instead of MOV.
|
||||
*/
|
||||
.Ldiff_in_b:
|
||||
strcmp_epilogue_aligned syndrome_b, data1b, data2b 1
|
||||
|
||||
.macro m_cbz reg label
|
||||
#ifdef __thumb2__
|
||||
cbz \reg, \label
|
||||
#else /* not defined __thumb2__ */
|
||||
cmp \reg, #0
|
||||
beq \label
|
||||
#endif /* not defined __thumb2__ */
|
||||
.endm /* m_cbz */
|
||||
.Ldiff_in_a:
|
||||
.cfi_restore_state
|
||||
strcmp_epilogue_aligned syndrome_a, data1a, data2a 1
|
||||
|
||||
.macro m_cbnz reg label
|
||||
#ifdef __thumb2__
|
||||
cbnz \reg, \label
|
||||
#else /* not defined __thumb2__ */
|
||||
cmp \reg, #0
|
||||
bne \label
|
||||
#endif /* not defined __thumb2__ */
|
||||
.endm /* m_cbnz */
|
||||
.cfi_restore_state
|
||||
.Lmisaligned8:
|
||||
tst tmp1, #3
|
||||
bne .Lmisaligned4
|
||||
ands tmp1, src1, #3
|
||||
bne .Lmutual_align4
|
||||
|
||||
.macro init
|
||||
/* Macro to save temporary registers and prepare magic values. */
|
||||
subs sp, sp, #16
|
||||
.cfi_def_cfa_offset 16
|
||||
strd r4, r5, [sp, #8]
|
||||
.cfi_rel_offset r4, 0
|
||||
.cfi_rel_offset r5, 4
|
||||
strd r6, r7, [sp]
|
||||
.cfi_rel_offset r6, 8
|
||||
.cfi_rel_offset r7, 12
|
||||
mvn r6, #0 /* all F */
|
||||
mov r7, #0 /* all 0 */
|
||||
.endm /* init */
|
||||
/* Unrolled by a factor of 2, to reduce the number of post-increment
|
||||
operations. */
|
||||
.Lloop_aligned4:
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
.Lstart_realigned4:
|
||||
uadd8 syndrome, data1, const_m1 /* Only need GE bits. */
|
||||
eor syndrome, data1, data2
|
||||
sel syndrome, syndrome, const_m1
|
||||
cbnz syndrome, .Laligned4_done
|
||||
ldr data1, [src1, #-4]
|
||||
ldr data2, [src2, #-4]
|
||||
uadd8 syndrome, data1, const_m1
|
||||
eor syndrome, data1, data2
|
||||
sel syndrome, syndrome, const_m1
|
||||
cmp syndrome, #0
|
||||
beq .Lloop_aligned4
|
||||
|
||||
.macro magic_compare_and_branch w1 w2 label
|
||||
/* Macro to compare registers w1 and w2 and conditionally branch to label. */
|
||||
cmp \w1, \w2 /* Are w1 and w2 the same? */
|
||||
magic_find_zero_bytes \w1
|
||||
it eq
|
||||
cmpeq ip, #0 /* Is there a zero byte in w1? */
|
||||
bne \label
|
||||
.endm /* magic_compare_and_branch */
|
||||
.Laligned4_done:
|
||||
strcmp_epilogue_aligned syndrome, data1, data2, 0
|
||||
|
||||
.macro magic_find_zero_bytes w1
|
||||
/* Macro to find all-zero bytes in w1, result is in ip. */
|
||||
uadd8 ip, \w1, r6
|
||||
sel ip, r7, r6
|
||||
.endm /* magic_find_zero_bytes */
|
||||
.Lmutual_align4:
|
||||
.cfi_restore_state
|
||||
/* Deal with mutual misalignment by aligning downwards and then
|
||||
masking off the unwanted loaded data to prevent a difference. */
|
||||
lsl tmp1, tmp1, #3 /* Bytes -> bits. */
|
||||
bic src1, src1, #3
|
||||
ldr data1, [src1], #8
|
||||
bic src2, src2, #3
|
||||
ldr data2, [src2], #8
|
||||
|
||||
.macro setup_return w1 w2
|
||||
#ifdef __ARMEB__
|
||||
mov r1, \w1
|
||||
mov r2, \w2
|
||||
#else /* not __ARMEB__ */
|
||||
rev r1, \w1
|
||||
rev r2, \w2
|
||||
#endif /* not __ARMEB__ */
|
||||
.endm /* setup_return */
|
||||
/* In thumb code we can't use MVN with a register shift, but
|
||||
we do have ORN. */
|
||||
S2HI tmp1, const_m1, tmp1
|
||||
orn data1, data1, tmp1
|
||||
orn data2, data2, tmp1
|
||||
b .Lstart_realigned4
|
||||
|
||||
pld [r0, #0]
|
||||
pld [r1, #0]
|
||||
.Lmisaligned4:
|
||||
ands tmp1, src1, #3
|
||||
beq .Lsrc1_aligned
|
||||
sub src2, src2, tmp1
|
||||
bic src1, src1, #3
|
||||
lsls tmp1, tmp1, #31
|
||||
ldr data1, [src1], #4
|
||||
beq .Laligned_m2
|
||||
bcs .Laligned_m1
|
||||
|
||||
/* Are both strings double-word aligned? */
|
||||
orr ip, r0, r1
|
||||
tst ip, #7
|
||||
bne .L_do_align
|
||||
#ifdef STRCMP_NO_PRECHECK
|
||||
ldrb data2, [src2, #1]
|
||||
uxtb tmp1, data1, ror #BYTE1_OFFSET
|
||||
subs tmp1, tmp1, data2
|
||||
bne .Lmisaligned_exit
|
||||
cbz data2, .Lmisaligned_exit
|
||||
|
||||
/* Fast path. */
|
||||
init
|
||||
.Laligned_m2:
|
||||
ldrb data2, [src2, #2]
|
||||
uxtb tmp1, data1, ror #BYTE2_OFFSET
|
||||
subs tmp1, tmp1, data2
|
||||
bne .Lmisaligned_exit
|
||||
cbz data2, .Lmisaligned_exit
|
||||
|
||||
.L_doubleword_aligned:
|
||||
.Laligned_m1:
|
||||
ldrb data2, [src2, #3]
|
||||
uxtb tmp1, data1, ror #BYTE3_OFFSET
|
||||
subs tmp1, tmp1, data2
|
||||
bne .Lmisaligned_exit
|
||||
add src2, src2, #4
|
||||
cbnz data2, .Lsrc1_aligned
|
||||
#else /* STRCMP_NO_PRECHECK */
|
||||
/* If we've done the pre-check, then we don't need to check the
|
||||
first byte again here. */
|
||||
ldrb data2, [src2, #2]
|
||||
uxtb tmp1, data1, ror #BYTE2_OFFSET
|
||||
subs tmp1, tmp1, data2
|
||||
bne .Lmisaligned_exit
|
||||
cbz data2, .Lmisaligned_exit
|
||||
|
||||
/* Get here when the strings to compare are double-word aligned. */
|
||||
/* Compare two words in every iteration. */
|
||||
.p2align 2
|
||||
2:
|
||||
pld [r0, #16]
|
||||
pld [r1, #16]
|
||||
.Laligned_m2:
|
||||
ldrb data2, [src2, #3]
|
||||
uxtb tmp1, data1, ror #BYTE3_OFFSET
|
||||
subs tmp1, tmp1, data2
|
||||
bne .Lmisaligned_exit
|
||||
cbnz data2, .Laligned_m1
|
||||
#endif
|
||||
|
||||
/* Load the next double-word from each string. */
|
||||
ldrd r2, r3, [r0], #8
|
||||
ldrd r4, r5, [r1], #8
|
||||
.Lmisaligned_exit:
|
||||
.cfi_remember_state
|
||||
mov result, tmp1
|
||||
ldr r4, [sp], #16
|
||||
.cfi_restore 4
|
||||
bx lr
|
||||
|
||||
magic_compare_and_branch w1=r2, w2=r4, label=.L_return_24
|
||||
magic_compare_and_branch w1=r3, w2=r5, label=.L_return_35
|
||||
b 2b
|
||||
#ifndef STRCMP_NO_PRECHECK
|
||||
.Laligned_m1:
|
||||
add src2, src2, #4
|
||||
#endif
|
||||
.Lsrc1_aligned:
|
||||
.cfi_restore_state
|
||||
/* src1 is word aligned, but src2 has no common alignment
|
||||
with it. */
|
||||
ldr data1, [src1], #4
|
||||
lsls tmp1, src2, #31 /* C=src2[1], Z=src2[0]. */
|
||||
|
||||
.L_do_align:
|
||||
/* Is the first string word-aligned? */
|
||||
ands ip, r0, #3
|
||||
beq .L_word_aligned_r0
|
||||
bic src2, src2, #3
|
||||
ldr data2, [src2], #4
|
||||
bhi .Loverlap1 /* C=1, Z=0 => src2[1:0] = 0b11. */
|
||||
bcs .Loverlap2 /* C=1, Z=1 => src2[1:0] = 0b10. */
|
||||
|
||||
/* Fast compare byte by byte until the first string is word-aligned. */
|
||||
/* The offset of r0 from a word boundary is in ip. Thus, the number of bytes
|
||||
to read until the next word boundary is 4-ip. */
|
||||
bic r0, r0, #3
|
||||
ldr r2, [r0], #4
|
||||
lsls ip, ip, #31
|
||||
beq .L_byte2
|
||||
bcs .L_byte3
|
||||
/* (overlap3) C=0, Z=0 => src2[1:0] = 0b01. */
|
||||
.Loverlap3:
|
||||
bic tmp1, data1, #MSB
|
||||
uadd8 syndrome, data1, const_m1
|
||||
eors syndrome, tmp1, data2, S2LO #8
|
||||
sel syndrome, syndrome, const_m1
|
||||
bne 4f
|
||||
cbnz syndrome, 5f
|
||||
ldr data2, [src2], #4
|
||||
eor tmp1, tmp1, data1
|
||||
cmp tmp1, data2, S2HI #24
|
||||
bne 6f
|
||||
ldr data1, [src1], #4
|
||||
b .Loverlap3
|
||||
4:
|
||||
S2LO data2, data2, #8
|
||||
b .Lstrcmp_tail
|
||||
|
||||
.L_byte1:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE1_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbz reg=r3, label=.L_fast_return
|
||||
5:
|
||||
bics syndrome, syndrome, #MSB
|
||||
bne .Lstrcmp_done_equal
|
||||
|
||||
.L_byte2:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE2_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbz reg=r3, label=.L_fast_return
|
||||
/* We can only get here if the MSB of data1 contains 0, so
|
||||
fast-path the exit. */
|
||||
ldrb result, [src2]
|
||||
.cfi_remember_state
|
||||
ldrd r4, r5, [sp], #16
|
||||
.cfi_restore 4
|
||||
.cfi_restore 5
|
||||
/* R6/7 Not used in this sequence. */
|
||||
.cfi_restore 6
|
||||
.cfi_restore 7
|
||||
neg result, result
|
||||
bx lr
|
||||
|
||||
.L_byte3:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE3_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbnz reg=r3, label=.L_word_aligned_r0
|
||||
6:
|
||||
.cfi_restore_state
|
||||
S2LO data1, data1, #24
|
||||
and data2, data2, #LSB
|
||||
b .Lstrcmp_tail
|
||||
|
||||
.L_fast_return:
|
||||
mov r0, ip
|
||||
bx lr
|
||||
.p2align 5,,12 /* Ensure at least 3 instructions in cache line. */
|
||||
.Loverlap2:
|
||||
and tmp1, data1, const_m1, S2LO #16
|
||||
uadd8 syndrome, data1, const_m1
|
||||
eors syndrome, tmp1, data2, S2LO #16
|
||||
sel syndrome, syndrome, const_m1
|
||||
bne 4f
|
||||
cbnz syndrome, 5f
|
||||
ldr data2, [src2], #4
|
||||
eor tmp1, tmp1, data1
|
||||
cmp tmp1, data2, S2HI #16
|
||||
bne 6f
|
||||
ldr data1, [src1], #4
|
||||
b .Loverlap2
|
||||
4:
|
||||
S2LO data2, data2, #16
|
||||
b .Lstrcmp_tail
|
||||
5:
|
||||
ands syndrome, syndrome, const_m1, S2LO #16
|
||||
bne .Lstrcmp_done_equal
|
||||
|
||||
.L_word_aligned_r0:
|
||||
init
|
||||
/* The first string is word-aligned. */
|
||||
/* Is the second string word-aligned? */
|
||||
ands ip, r1, #3
|
||||
bne .L_strcmp_unaligned
|
||||
ldrh data2, [src2]
|
||||
S2LO data1, data1, #16
|
||||
#ifdef __ARM_BIG_ENDIAN
|
||||
lsl data2, data2, #16
|
||||
#endif
|
||||
b .Lstrcmp_tail
|
||||
|
||||
.L_word_aligned:
|
||||
/* The strings are word-aligned. */
|
||||
/* Is the first string double-word aligned? */
|
||||
tst r0, #4
|
||||
beq .L_doubleword_aligned_r0
|
||||
6:
|
||||
S2LO data1, data1, #16
|
||||
and data2, data2, const_m1, S2LO #16
|
||||
b .Lstrcmp_tail
|
||||
|
||||
/* If r0 is not double-word aligned yet, align it by loading
|
||||
and comparing the next word from each string. */
|
||||
ldr r2, [r0], #4
|
||||
ldr r4, [r1], #4
|
||||
magic_compare_and_branch w1=r2 w2=r4 label=.L_return_24
|
||||
.p2align 5,,12 /* Ensure at least 3 instructions in cache line. */
|
||||
.Loverlap1:
|
||||
and tmp1, data1, #LSB
|
||||
uadd8 syndrome, data1, const_m1
|
||||
eors syndrome, tmp1, data2, S2LO #24
|
||||
sel syndrome, syndrome, const_m1
|
||||
bne 4f
|
||||
cbnz syndrome, 5f
|
||||
ldr data2, [src2], #4
|
||||
eor tmp1, tmp1, data1
|
||||
cmp tmp1, data2, S2HI #8
|
||||
bne 6f
|
||||
ldr data1, [src1], #4
|
||||
b .Loverlap1
|
||||
4:
|
||||
S2LO data2, data2, #24
|
||||
b .Lstrcmp_tail
|
||||
5:
|
||||
tst syndrome, #LSB
|
||||
bne .Lstrcmp_done_equal
|
||||
ldr data2, [src2]
|
||||
6:
|
||||
S2LO data1, data1, #8
|
||||
bic data2, data2, #MSB
|
||||
b .Lstrcmp_tail
|
||||
|
||||
.L_doubleword_aligned_r0:
|
||||
/* Get here when r0 is double-word aligned. */
|
||||
/* Is r1 doubleword_aligned? */
|
||||
tst r1, #4
|
||||
beq .L_doubleword_aligned
|
||||
.Lstrcmp_done_equal:
|
||||
mov result, #0
|
||||
.cfi_remember_state
|
||||
ldrd r4, r5, [sp], #16
|
||||
.cfi_restore 4
|
||||
.cfi_restore 5
|
||||
/* R6/7 not used in this sequence. */
|
||||
.cfi_restore 6
|
||||
.cfi_restore 7
|
||||
bx lr
|
||||
|
||||
/* Get here when the strings to compare are word-aligned,
|
||||
r0 is double-word aligned, but r1 is not double-word aligned. */
|
||||
|
||||
/* Initialize the queue. */
|
||||
ldr r5, [r1], #4
|
||||
|
||||
/* Compare two words in every iteration. */
|
||||
.p2align 2
|
||||
3:
|
||||
pld [r0, #16]
|
||||
pld [r1, #16]
|
||||
|
||||
/* Load the next double-word from each string and compare. */
|
||||
ldrd r2, r3, [r0], #8
|
||||
magic_compare_and_branch w1=r2 w2=r5 label=.L_return_25
|
||||
ldrd r4, r5, [r1], #8
|
||||
magic_compare_and_branch w1=r3 w2=r4 label=.L_return_34
|
||||
b 3b
|
||||
|
||||
.macro miscmp_word offsetlo offsethi
|
||||
/* Macro to compare misaligned strings. */
|
||||
/* r0, r1 are word-aligned, and at least one of the strings
|
||||
is not double-word aligned. */
|
||||
/* Compare one word in every loop iteration. */
|
||||
/* OFFSETLO is the original bit-offset of r1 from a word-boundary,
|
||||
OFFSETHI is 32 - OFFSETLO (i.e., offset from the next word). */
|
||||
|
||||
/* Initialize the shift queue. */
|
||||
ldr r5, [r1], #4
|
||||
|
||||
/* Compare one word from each string in every loop iteration. */
|
||||
.p2align 2
|
||||
7:
|
||||
ldr r3, [r0], #4
|
||||
S2LOMEM r5, r5, #\offsetlo
|
||||
magic_find_zero_bytes w1=r3
|
||||
cmp r7, ip, S2HIMEM #\offsetlo
|
||||
and r2, r3, r6, S2LOMEM #\offsetlo
|
||||
it eq
|
||||
cmpeq r2, r5
|
||||
bne .L_return_25
|
||||
ldr r5, [r1], #4
|
||||
cmp ip, #0
|
||||
eor r3, r2, r3
|
||||
S2HIMEM r2, r5, #\offsethi
|
||||
it eq
|
||||
cmpeq r3, r2
|
||||
bne .L_return_32
|
||||
b 7b
|
||||
.endm /* miscmp_word */
|
||||
|
||||
.L_strcmp_unaligned:
|
||||
/* r0 is word-aligned, r1 is at offset ip from a word. */
|
||||
/* Align r1 to the (previous) word-boundary. */
|
||||
bic r1, r1, #3
|
||||
|
||||
/* Unaligned comparison word by word using LDRs. */
|
||||
cmp ip, #2
|
||||
beq .L_miscmp_word_16 /* If ip == 2. */
|
||||
bge .L_miscmp_word_24 /* If ip == 3. */
|
||||
miscmp_word offsetlo=8 offsethi=24 /* If ip == 1. */
|
||||
.L_miscmp_word_16: miscmp_word offsetlo=16 offsethi=16
|
||||
.L_miscmp_word_24: miscmp_word offsetlo=24 offsethi=8
|
||||
|
||||
|
||||
.L_return_32:
|
||||
setup_return w1=r3, w2=r2
|
||||
b .L_do_return
|
||||
.L_return_34:
|
||||
setup_return w1=r3, w2=r4
|
||||
b .L_do_return
|
||||
.L_return_25:
|
||||
setup_return w1=r2, w2=r5
|
||||
b .L_do_return
|
||||
.L_return_35:
|
||||
setup_return w1=r3, w2=r5
|
||||
b .L_do_return
|
||||
.L_return_24:
|
||||
setup_return w1=r2, w2=r4
|
||||
|
||||
.L_do_return:
|
||||
|
||||
#ifdef __ARMEB__
|
||||
mov r0, ip
|
||||
#else /* not __ARMEB__ */
|
||||
rev r0, ip
|
||||
#endif /* not __ARMEB__ */
|
||||
|
||||
/* Restore temporaries early, before computing the return value. */
|
||||
ldrd r6, r7, [sp]
|
||||
ldrd r4, r5, [sp, #8]
|
||||
adds sp, sp, #16
|
||||
.cfi_def_cfa_offset 0
|
||||
.cfi_restore r4
|
||||
.cfi_restore r5
|
||||
.cfi_restore r6
|
||||
.cfi_restore r7
|
||||
|
||||
/* There is a zero or a different byte between r1 and r2. */
|
||||
/* r0 contains a mask of all-zero bytes in r1. */
|
||||
/* Using r0 and not ip here because cbz requires low register. */
|
||||
m_cbz reg=r0, label=.L_compute_return_value
|
||||
clz r0, r0
|
||||
/* r0 contains the number of bits on the left of the first all-zero byte in r1. */
|
||||
rsb r0, r0, #24
|
||||
/* Here, r0 contains the number of bits on the right of the first all-zero byte in r1. */
|
||||
lsr r1, r1, r0
|
||||
lsr r2, r2, r0
|
||||
|
||||
.L_compute_return_value:
|
||||
movs r0, #1
|
||||
cmp r1, r2
|
||||
/* The return value is computed as follows.
|
||||
If r1>r2 then (C==1 and Z==0) and LS doesn't hold and r0 is #1 at return.
|
||||
If r1<r2 then (C==0 and Z==0) and we execute SBC with carry_in=0,
|
||||
which means r0:=r0-r0-1 and r0 is #-1 at return.
|
||||
If r1=r2 then (C==1 and Z==1) and we execute SBC with carry_in=1,
|
||||
which means r0:=r0-r0 and r0 is #0 at return.
|
||||
(C==0 and Z==1) cannot happen because the carry bit is "not borrow". */
|
||||
it ls
|
||||
sbcls r0, r0, r0
|
||||
bx lr
|
||||
.Lstrcmp_tail:
|
||||
.cfi_restore_state
|
||||
#ifndef __ARM_BIG_ENDIAN
|
||||
rev data1, data1
|
||||
rev data2, data2
|
||||
/* Now everything looks big-endian... */
|
||||
#endif
|
||||
uadd8 tmp1, data1, const_m1
|
||||
eor tmp1, data1, data2
|
||||
sel syndrome, tmp1, const_m1
|
||||
clz tmp1, syndrome
|
||||
lsl data1, data1, tmp1
|
||||
lsl data2, data2, tmp1
|
||||
lsr result, data1, #24
|
||||
ldrd r4, r5, [sp], #16
|
||||
.cfi_restore 4
|
||||
.cfi_restore 5
|
||||
/* R6/7 not used in this sequence. */
|
||||
.cfi_restore 6
|
||||
.cfi_restore 7
|
||||
sub result, result, data2, lsr #24
|
||||
bx lr
|
||||
END(strcmp_a15)
|
||||
|
|
|
@ -1,551 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2013 ARM Ltd
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. The name of the company may not be used to endorse or promote
|
||||
* products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||||
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <private/bionic_asm.h>
|
||||
|
||||
#ifdef __ARMEB__
|
||||
#define S2LOMEM lsl
|
||||
#define S2LOMEMEQ lsleq
|
||||
#define S2HIMEM lsr
|
||||
#define MSB 0x000000ff
|
||||
#define LSB 0xff000000
|
||||
#define BYTE0_OFFSET 24
|
||||
#define BYTE1_OFFSET 16
|
||||
#define BYTE2_OFFSET 8
|
||||
#define BYTE3_OFFSET 0
|
||||
#else /* not __ARMEB__ */
|
||||
#define S2LOMEM lsr
|
||||
#define S2LOMEMEQ lsreq
|
||||
#define S2HIMEM lsl
|
||||
#define BYTE0_OFFSET 0
|
||||
#define BYTE1_OFFSET 8
|
||||
#define BYTE2_OFFSET 16
|
||||
#define BYTE3_OFFSET 24
|
||||
#define MSB 0xff000000
|
||||
#define LSB 0x000000ff
|
||||
#endif /* not __ARMEB__ */
|
||||
|
||||
.syntax unified
|
||||
|
||||
// To avoid warning about deprecated instructions, add an explicit
|
||||
// arch. The code generated is exactly the same.
|
||||
.arch armv7-a
|
||||
|
||||
#if defined (__thumb__)
|
||||
.thumb
|
||||
.thumb_func
|
||||
#endif
|
||||
|
||||
ENTRY(strcmp_a9)
|
||||
/* Use LDRD whenever possible. */
|
||||
|
||||
/* The main thing to look out for when comparing large blocks is that
|
||||
the loads do not cross a page boundary when loading past the index
|
||||
of the byte with the first difference or the first string-terminator.
|
||||
|
||||
For example, if the strings are identical and the string-terminator
|
||||
is at index k, byte by byte comparison will not load beyond address
|
||||
s1+k and s2+k; word by word comparison may load up to 3 bytes beyond
|
||||
k; double word - up to 7 bytes. If the load of these bytes crosses
|
||||
a page boundary, it might cause a memory fault (if the page is not mapped)
|
||||
that would not have happened in byte by byte comparison.
|
||||
|
||||
If an address is (double) word aligned, then a load of a (double) word
|
||||
from that address will not cross a page boundary.
|
||||
Therefore, the algorithm below considers word and double-word alignment
|
||||
of strings separately. */
|
||||
|
||||
/* High-level description of the algorithm.
|
||||
|
||||
* The fast path: if both strings are double-word aligned,
|
||||
use LDRD to load two words from each string in every loop iteration.
|
||||
* If the strings have the same offset from a word boundary,
|
||||
use LDRB to load and compare byte by byte until
|
||||
the first string is aligned to a word boundary (at most 3 bytes).
|
||||
This is optimized for quick return on short unaligned strings.
|
||||
* If the strings have the same offset from a double-word boundary,
|
||||
use LDRD to load two words from each string in every loop iteration, as in the fast path.
|
||||
* If the strings do not have the same offset from a double-word boundary,
|
||||
load a word from the second string before the loop to initialize the queue.
|
||||
Use LDRD to load two words from every string in every loop iteration.
|
||||
Inside the loop, load the second word from the second string only after comparing
|
||||
the first word, using the queued value, to guarantee safety across page boundaries.
|
||||
* If the strings do not have the same offset from a word boundary,
|
||||
use LDR and a shift queue. Order of loads and comparisons matters,
|
||||
similarly to the previous case.
|
||||
|
||||
* Use UADD8 and SEL to compare words, and use REV and CLZ to compute the return value.
|
||||
* The only difference between ARM and Thumb modes is the use of CBZ instruction.
|
||||
* The only difference between big and little endian is the use of REV in little endian
|
||||
to compute the return value, instead of MOV.
|
||||
*/
|
||||
|
||||
.macro m_cbz reg label
|
||||
#ifdef __thumb2__
|
||||
cbz \reg, \label
|
||||
#else /* not defined __thumb2__ */
|
||||
cmp \reg, #0
|
||||
beq \label
|
||||
#endif /* not defined __thumb2__ */
|
||||
.endm /* m_cbz */
|
||||
|
||||
.macro m_cbnz reg label
|
||||
#ifdef __thumb2__
|
||||
cbnz \reg, \label
|
||||
#else /* not defined __thumb2__ */
|
||||
cmp \reg, #0
|
||||
bne \label
|
||||
#endif /* not defined __thumb2__ */
|
||||
.endm /* m_cbnz */
|
||||
|
||||
.macro init
|
||||
/* Macro to save temporary registers and prepare magic values. */
|
||||
subs sp, sp, #16
|
||||
.cfi_def_cfa_offset 16
|
||||
strd r4, r5, [sp, #8]
|
||||
.cfi_rel_offset r4, 0
|
||||
.cfi_rel_offset r5, 4
|
||||
strd r6, r7, [sp]
|
||||
.cfi_rel_offset r6, 8
|
||||
.cfi_rel_offset r7, 12
|
||||
mvn r6, #0 /* all F */
|
||||
mov r7, #0 /* all 0 */
|
||||
.endm /* init */
|
||||
|
||||
.macro magic_compare_and_branch w1 w2 label
|
||||
/* Macro to compare registers w1 and w2 and conditionally branch to label. */
|
||||
cmp \w1, \w2 /* Are w1 and w2 the same? */
|
||||
magic_find_zero_bytes \w1
|
||||
it eq
|
||||
cmpeq ip, #0 /* Is there a zero byte in w1? */
|
||||
bne \label
|
||||
.endm /* magic_compare_and_branch */
|
||||
|
||||
.macro magic_find_zero_bytes w1
|
||||
/* Macro to find all-zero bytes in w1, result is in ip. */
|
||||
uadd8 ip, \w1, r6
|
||||
sel ip, r7, r6
|
||||
.endm /* magic_find_zero_bytes */
|
||||
|
||||
.macro setup_return w1 w2
|
||||
#ifdef __ARMEB__
|
||||
mov r1, \w1
|
||||
mov r2, \w2
|
||||
#else /* not __ARMEB__ */
|
||||
rev r1, \w1
|
||||
rev r2, \w2
|
||||
#endif /* not __ARMEB__ */
|
||||
.endm /* setup_return */
|
||||
|
||||
pld [r0, #0]
|
||||
pld [r1, #0]
|
||||
|
||||
/* Are both strings double-word aligned? */
|
||||
orr ip, r0, r1
|
||||
tst ip, #7
|
||||
bne .L_do_align
|
||||
|
||||
/* Fast path. */
|
||||
init
|
||||
|
||||
.L_doubleword_aligned:
|
||||
|
||||
/* Get here when the strings to compare are double-word aligned. */
|
||||
/* Compare two words in every iteration. */
|
||||
.p2align 2
|
||||
2:
|
||||
pld [r0, #16]
|
||||
pld [r1, #16]
|
||||
|
||||
/* Load the next double-word from each string. */
|
||||
ldrd r2, r3, [r0], #8
|
||||
ldrd r4, r5, [r1], #8
|
||||
|
||||
magic_compare_and_branch w1=r2, w2=r4, label=.L_return_24
|
||||
magic_compare_and_branch w1=r3, w2=r5, label=.L_return_35
|
||||
b 2b
|
||||
|
||||
.L_do_align:
|
||||
/* Is the first string word-aligned? */
|
||||
ands ip, r0, #3
|
||||
beq .L_word_aligned_r0
|
||||
|
||||
/* Fast compare byte by byte until the first string is word-aligned. */
|
||||
/* The offset of r0 from a word boundary is in ip. Thus, the number of bytes
|
||||
to read until the next word boundary is 4-ip. */
|
||||
bic r0, r0, #3
|
||||
ldr r2, [r0], #4
|
||||
lsls ip, ip, #31
|
||||
beq .L_byte2
|
||||
bcs .L_byte3
|
||||
|
||||
.L_byte1:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE1_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbz reg=r3, label=.L_fast_return
|
||||
|
||||
.L_byte2:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE2_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbz reg=r3, label=.L_fast_return
|
||||
|
||||
.L_byte3:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE3_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbnz reg=r3, label=.L_word_aligned_r0
|
||||
|
||||
.L_fast_return:
|
||||
mov r0, ip
|
||||
bx lr
|
||||
|
||||
.L_word_aligned_r0:
|
||||
init
|
||||
/* The first string is word-aligned. */
|
||||
/* Is the second string word-aligned? */
|
||||
ands ip, r1, #3
|
||||
bne .L_strcmp_unaligned
|
||||
|
||||
.L_word_aligned:
|
||||
/* The strings are word-aligned. */
|
||||
/* Is the first string double-word aligned? */
|
||||
tst r0, #4
|
||||
beq .L_doubleword_aligned_r0
|
||||
|
||||
/* If r0 is not double-word aligned yet, align it by loading
|
||||
and comparing the next word from each string. */
|
||||
ldr r2, [r0], #4
|
||||
ldr r4, [r1], #4
|
||||
magic_compare_and_branch w1=r2 w2=r4 label=.L_return_24
|
||||
|
||||
.L_doubleword_aligned_r0:
|
||||
/* Get here when r0 is double-word aligned. */
|
||||
/* Is r1 doubleword_aligned? */
|
||||
tst r1, #4
|
||||
beq .L_doubleword_aligned
|
||||
|
||||
/* Get here when the strings to compare are word-aligned,
|
||||
r0 is double-word aligned, but r1 is not double-word aligned. */
|
||||
|
||||
/* Initialize the queue. */
|
||||
ldr r5, [r1], #4
|
||||
|
||||
/* Compare two words in every iteration. */
|
||||
.p2align 2
|
||||
3:
|
||||
pld [r0, #16]
|
||||
pld [r1, #16]
|
||||
|
||||
/* Load the next double-word from each string and compare. */
|
||||
ldrd r2, r3, [r0], #8
|
||||
magic_compare_and_branch w1=r2 w2=r5 label=.L_return_25
|
||||
ldrd r4, r5, [r1], #8
|
||||
magic_compare_and_branch w1=r3 w2=r4 label=.L_return_34
|
||||
b 3b
|
||||
|
||||
.macro miscmp_word offsetlo offsethi
|
||||
/* Macro to compare misaligned strings. */
|
||||
/* r0, r1 are word-aligned, and at least one of the strings
|
||||
is not double-word aligned. */
|
||||
/* Compare one word in every loop iteration. */
|
||||
/* OFFSETLO is the original bit-offset of r1 from a word-boundary,
|
||||
OFFSETHI is 32 - OFFSETLO (i.e., offset from the next word). */
|
||||
|
||||
/* Initialize the shift queue. */
|
||||
ldr r5, [r1], #4
|
||||
|
||||
/* Compare one word from each string in every loop iteration. */
|
||||
.p2align 2
|
||||
7:
|
||||
ldr r3, [r0], #4
|
||||
S2LOMEM r5, r5, #\offsetlo
|
||||
magic_find_zero_bytes w1=r3
|
||||
cmp r7, ip, S2HIMEM #\offsetlo
|
||||
and r2, r3, r6, S2LOMEM #\offsetlo
|
||||
it eq
|
||||
cmpeq r2, r5
|
||||
bne .L_return_25
|
||||
ldr r5, [r1], #4
|
||||
cmp ip, #0
|
||||
eor r3, r2, r3
|
||||
S2HIMEM r2, r5, #\offsethi
|
||||
it eq
|
||||
cmpeq r3, r2
|
||||
bne .L_return_32
|
||||
b 7b
|
||||
.endm /* miscmp_word */
|
||||
|
||||
.L_return_32:
|
||||
setup_return w1=r3, w2=r2
|
||||
b .L_do_return
|
||||
.L_return_34:
|
||||
setup_return w1=r3, w2=r4
|
||||
b .L_do_return
|
||||
.L_return_25:
|
||||
setup_return w1=r2, w2=r5
|
||||
b .L_do_return
|
||||
.L_return_35:
|
||||
setup_return w1=r3, w2=r5
|
||||
b .L_do_return
|
||||
.L_return_24:
|
||||
setup_return w1=r2, w2=r4
|
||||
|
||||
.L_do_return:
|
||||
|
||||
#ifdef __ARMEB__
|
||||
mov r0, ip
|
||||
#else /* not __ARMEB__ */
|
||||
rev r0, ip
|
||||
#endif /* not __ARMEB__ */
|
||||
|
||||
/* Restore temporaries early, before computing the return value. */
|
||||
ldrd r6, r7, [sp]
|
||||
ldrd r4, r5, [sp, #8]
|
||||
adds sp, sp, #16
|
||||
.cfi_def_cfa_offset 0
|
||||
.cfi_restore r4
|
||||
.cfi_restore r5
|
||||
.cfi_restore r6
|
||||
.cfi_restore r7
|
||||
|
||||
/* There is a zero or a different byte between r1 and r2. */
|
||||
/* r0 contains a mask of all-zero bytes in r1. */
|
||||
/* Using r0 and not ip here because cbz requires low register. */
|
||||
m_cbz reg=r0, label=.L_compute_return_value
|
||||
clz r0, r0
|
||||
/* r0 contains the number of bits on the left of the first all-zero byte in r1. */
|
||||
rsb r0, r0, #24
|
||||
/* Here, r0 contains the number of bits on the right of the first all-zero byte in r1. */
|
||||
lsr r1, r1, r0
|
||||
lsr r2, r2, r0
|
||||
|
||||
.L_compute_return_value:
|
||||
movs r0, #1
|
||||
cmp r1, r2
|
||||
/* The return value is computed as follows.
|
||||
If r1>r2 then (C==1 and Z==0) and LS doesn't hold and r0 is #1 at return.
|
||||
If r1<r2 then (C==0 and Z==0) and we execute SBC with carry_in=0,
|
||||
which means r0:=r0-r0-1 and r0 is #-1 at return.
|
||||
If r1=r2 then (C==1 and Z==1) and we execute SBC with carry_in=1,
|
||||
which means r0:=r0-r0 and r0 is #0 at return.
|
||||
(C==0 and Z==1) cannot happen because the carry bit is "not borrow". */
|
||||
it ls
|
||||
sbcls r0, r0, r0
|
||||
bx lr
|
||||
|
||||
/* The code from the previous version of strcmp.S handles all of the
|
||||
* cases where the first string and seconds string cannot both be
|
||||
* aligned to a word boundary faster than the new algorithm. See
|
||||
* bionic/libc/arch-arm/cortex-a15/bionic/strcmp.S for the unedited
|
||||
* version of the code.
|
||||
*/
|
||||
.L_strcmp_unaligned:
|
||||
wp1 .req r0
|
||||
wp2 .req r1
|
||||
b1 .req r2
|
||||
w1 .req r4
|
||||
w2 .req r5
|
||||
t1 .req ip
|
||||
@ r3 is scratch
|
||||
|
||||
2:
|
||||
mov b1, #1
|
||||
orr b1, b1, b1, lsl #8
|
||||
orr b1, b1, b1, lsl #16
|
||||
|
||||
and t1, wp2, #3
|
||||
bic wp2, wp2, #3
|
||||
ldr w1, [wp1], #4
|
||||
ldr w2, [wp2], #4
|
||||
cmp t1, #2
|
||||
beq 2f
|
||||
bhi 3f
|
||||
|
||||
/* Critical inner Loop: Block with 3 bytes initial overlap */
|
||||
.p2align 2
|
||||
1:
|
||||
bic t1, w1, #MSB
|
||||
cmp t1, w2, S2LOMEM #8
|
||||
sub r3, w1, b1
|
||||
bic r3, r3, w1
|
||||
bne 4f
|
||||
ands r3, r3, b1, lsl #7
|
||||
it eq
|
||||
ldreq w2, [wp2], #4
|
||||
bne 5f
|
||||
eor t1, t1, w1
|
||||
cmp t1, w2, S2HIMEM #24
|
||||
bne 6f
|
||||
ldr w1, [wp1], #4
|
||||
b 1b
|
||||
4:
|
||||
S2LOMEM w2, w2, #8
|
||||
b 8f
|
||||
|
||||
5:
|
||||
#ifdef __ARMEB__
|
||||
/* The syndrome value may contain false ones if the string ends
|
||||
* with the bytes 0x01 0x00
|
||||
*/
|
||||
tst w1, #0xff000000
|
||||
itt ne
|
||||
tstne w1, #0x00ff0000
|
||||
tstne w1, #0x0000ff00
|
||||
beq 7f
|
||||
#else
|
||||
bics r3, r3, #0xff000000
|
||||
bne 7f
|
||||
#endif
|
||||
ldrb w2, [wp2]
|
||||
S2LOMEM t1, w1, #24
|
||||
#ifdef __ARMEB__
|
||||
lsl w2, w2, #24
|
||||
#endif
|
||||
b 8f
|
||||
|
||||
6:
|
||||
S2LOMEM t1, w1, #24
|
||||
and w2, w2, #LSB
|
||||
b 8f
|
||||
|
||||
/* Critical inner Loop: Block with 2 bytes initial overlap */
|
||||
.p2align 2
|
||||
2:
|
||||
S2HIMEM t1, w1, #16
|
||||
sub r3, w1, b1
|
||||
S2LOMEM t1, t1, #16
|
||||
bic r3, r3, w1
|
||||
cmp t1, w2, S2LOMEM #16
|
||||
bne 4f
|
||||
ands r3, r3, b1, lsl #7
|
||||
it eq
|
||||
ldreq w2, [wp2], #4
|
||||
bne 5f
|
||||
eor t1, t1, w1
|
||||
cmp t1, w2, S2HIMEM #16
|
||||
bne 6f
|
||||
ldr w1, [wp1], #4
|
||||
b 2b
|
||||
|
||||
5:
|
||||
#ifdef __ARMEB__
|
||||
/* The syndrome value may contain false ones if the string ends
|
||||
* with the bytes 0x01 0x00
|
||||
*/
|
||||
tst w1, #0xff000000
|
||||
it ne
|
||||
tstne w1, #0x00ff0000
|
||||
beq 7f
|
||||
#else
|
||||
lsls r3, r3, #16
|
||||
bne 7f
|
||||
#endif
|
||||
ldrh w2, [wp2]
|
||||
S2LOMEM t1, w1, #16
|
||||
#ifdef __ARMEB__
|
||||
lsl w2, w2, #16
|
||||
#endif
|
||||
b 8f
|
||||
|
||||
6:
|
||||
S2HIMEM w2, w2, #16
|
||||
S2LOMEM t1, w1, #16
|
||||
4:
|
||||
S2LOMEM w2, w2, #16
|
||||
b 8f
|
||||
|
||||
/* Critical inner Loop: Block with 1 byte initial overlap */
|
||||
.p2align 2
|
||||
3:
|
||||
and t1, w1, #LSB
|
||||
cmp t1, w2, S2LOMEM #24
|
||||
sub r3, w1, b1
|
||||
bic r3, r3, w1
|
||||
bne 4f
|
||||
ands r3, r3, b1, lsl #7
|
||||
it eq
|
||||
ldreq w2, [wp2], #4
|
||||
bne 5f
|
||||
eor t1, t1, w1
|
||||
cmp t1, w2, S2HIMEM #8
|
||||
bne 6f
|
||||
ldr w1, [wp1], #4
|
||||
b 3b
|
||||
4:
|
||||
S2LOMEM w2, w2, #24
|
||||
b 8f
|
||||
5:
|
||||
/* The syndrome value may contain false ones if the string ends
|
||||
* with the bytes 0x01 0x00
|
||||
*/
|
||||
tst w1, #LSB
|
||||
beq 7f
|
||||
ldr w2, [wp2], #4
|
||||
6:
|
||||
S2LOMEM t1, w1, #8
|
||||
bic w2, w2, #MSB
|
||||
b 8f
|
||||
7:
|
||||
mov r0, #0
|
||||
|
||||
/* Restore registers and stack. */
|
||||
ldrd r6, r7, [sp]
|
||||
ldrd r4, r5, [sp, #8]
|
||||
adds sp, sp, #16
|
||||
.cfi_def_cfa_offset 0
|
||||
.cfi_restore r4
|
||||
.cfi_restore r5
|
||||
.cfi_restore r6
|
||||
.cfi_restore r7
|
||||
|
||||
bx lr
|
||||
|
||||
8:
|
||||
and r2, t1, #LSB
|
||||
and r0, w2, #LSB
|
||||
cmp r0, #1
|
||||
it cs
|
||||
cmpcs r0, r2
|
||||
itt eq
|
||||
S2LOMEMEQ t1, t1, #8
|
||||
S2LOMEMEQ w2, w2, #8
|
||||
beq 8b
|
||||
sub r0, r2, r0
|
||||
|
||||
/* Restore registers and stack. */
|
||||
ldrd r6, r7, [sp]
|
||||
ldrd r4, r5, [sp, #8]
|
||||
adds sp, sp, #16
|
||||
|
||||
bx lr
|
||||
END(strcmp_a9)
|
|
@ -288,16 +288,7 @@ DEFINE_IFUNC(__strcat_chk) {
|
|||
|
||||
typedef int strcmp_func(const char* __lhs, const char* __rhs);
|
||||
DEFINE_IFUNC(strcmp) {
|
||||
switch(get_cpu_variant()) {
|
||||
case kCortexA9:
|
||||
RETURN_FUNC(strcmp_func, strcmp_a9);
|
||||
case kCortexA55:
|
||||
case kKrait:
|
||||
case kKryo:
|
||||
RETURN_FUNC(strcmp_func, strcmp_krait);
|
||||
default:
|
||||
RETURN_FUNC(strcmp_func, strcmp_a15);
|
||||
}
|
||||
RETURN_FUNC(strcmp_func, strcmp_a15);
|
||||
}
|
||||
|
||||
typedef size_t strlen_func(const char* __s);
|
||||
|
|
|
@ -1,489 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2013 ARM Ltd
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. The name of the company may not be used to endorse or promote
|
||||
* products derived from this software without specific prior written
|
||||
* permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
||||
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||||
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <private/bionic_asm.h>
|
||||
|
||||
#ifdef __ARMEB__
|
||||
#define S2LOMEM lsl
|
||||
#define S2LOMEMEQ lsleq
|
||||
#define S2HIMEM lsr
|
||||
#define MSB 0x000000ff
|
||||
#define LSB 0xff000000
|
||||
#define BYTE0_OFFSET 24
|
||||
#define BYTE1_OFFSET 16
|
||||
#define BYTE2_OFFSET 8
|
||||
#define BYTE3_OFFSET 0
|
||||
#else /* not __ARMEB__ */
|
||||
#define S2LOMEM lsr
|
||||
#define S2LOMEMEQ lsreq
|
||||
#define S2HIMEM lsl
|
||||
#define BYTE0_OFFSET 0
|
||||
#define BYTE1_OFFSET 8
|
||||
#define BYTE2_OFFSET 16
|
||||
#define BYTE3_OFFSET 24
|
||||
#define MSB 0xff000000
|
||||
#define LSB 0x000000ff
|
||||
#endif /* not __ARMEB__ */
|
||||
|
||||
.syntax unified
|
||||
|
||||
// To avoid warning about deprecated instructions, add an explicit
|
||||
// arch. The code generated is exactly the same.
|
||||
.arch armv7-a
|
||||
|
||||
#if defined (__thumb__)
|
||||
.thumb
|
||||
.thumb_func
|
||||
#endif
|
||||
|
||||
ENTRY(strcmp_krait)
|
||||
/* Use LDRD whenever possible. */
|
||||
|
||||
/* The main thing to look out for when comparing large blocks is that
|
||||
the loads do not cross a page boundary when loading past the index
|
||||
of the byte with the first difference or the first string-terminator.
|
||||
|
||||
For example, if the strings are identical and the string-terminator
|
||||
is at index k, byte by byte comparison will not load beyond address
|
||||
s1+k and s2+k; word by word comparison may load up to 3 bytes beyond
|
||||
k; double word - up to 7 bytes. If the load of these bytes crosses
|
||||
a page boundary, it might cause a memory fault (if the page is not mapped)
|
||||
that would not have happened in byte by byte comparison.
|
||||
|
||||
If an address is (double) word aligned, then a load of a (double) word
|
||||
from that address will not cross a page boundary.
|
||||
Therefore, the algorithm below considers word and double-word alignment
|
||||
of strings separately. */
|
||||
|
||||
/* High-level description of the algorithm.
|
||||
|
||||
* The fast path: if both strings are double-word aligned,
|
||||
use LDRD to load two words from each string in every loop iteration.
|
||||
* If the strings have the same offset from a word boundary,
|
||||
use LDRB to load and compare byte by byte until
|
||||
the first string is aligned to a word boundary (at most 3 bytes).
|
||||
This is optimized for quick return on short unaligned strings.
|
||||
* If the strings have the same offset from a double-word boundary,
|
||||
use LDRD to load two words from each string in every loop iteration, as in the fast path.
|
||||
* If the strings do not have the same offset from a double-word boundary,
|
||||
load a word from the second string before the loop to initialize the queue.
|
||||
Use LDRD to load two words from every string in every loop iteration.
|
||||
Inside the loop, load the second word from the second string only after comparing
|
||||
the first word, using the queued value, to guarantee safety across page boundaries.
|
||||
* If the strings do not have the same offset from a word boundary,
|
||||
use LDR and a shift queue. Order of loads and comparisons matters,
|
||||
similarly to the previous case.
|
||||
|
||||
* Use UADD8 and SEL to compare words, and use REV and CLZ to compute the return value.
|
||||
* The only difference between ARM and Thumb modes is the use of CBZ instruction.
|
||||
* The only difference between big and little endian is the use of REV in little endian
|
||||
to compute the return value, instead of MOV.
|
||||
*/
|
||||
|
||||
.macro m_cbz reg label
|
||||
#ifdef __thumb2__
|
||||
cbz \reg, \label
|
||||
#else /* not defined __thumb2__ */
|
||||
cmp \reg, #0
|
||||
beq \label
|
||||
#endif /* not defined __thumb2__ */
|
||||
.endm /* m_cbz */
|
||||
|
||||
.macro m_cbnz reg label
|
||||
#ifdef __thumb2__
|
||||
cbnz \reg, \label
|
||||
#else /* not defined __thumb2__ */
|
||||
cmp \reg, #0
|
||||
bne \label
|
||||
#endif /* not defined __thumb2__ */
|
||||
.endm /* m_cbnz */
|
||||
|
||||
.macro init
|
||||
/* Macro to save temporary registers and prepare magic values. */
|
||||
subs sp, sp, #16
|
||||
.cfi_def_cfa_offset 16
|
||||
strd r4, r5, [sp, #8]
|
||||
.cfi_rel_offset r4, 0
|
||||
.cfi_rel_offset r5, 4
|
||||
strd r6, r7, [sp]
|
||||
.cfi_rel_offset r6, 8
|
||||
.cfi_rel_offset r7, 12
|
||||
mvn r6, #0 /* all F */
|
||||
mov r7, #0 /* all 0 */
|
||||
.endm /* init */
|
||||
|
||||
.macro magic_compare_and_branch w1 w2 label
|
||||
/* Macro to compare registers w1 and w2 and conditionally branch to label. */
|
||||
cmp \w1, \w2 /* Are w1 and w2 the same? */
|
||||
magic_find_zero_bytes \w1
|
||||
it eq
|
||||
cmpeq ip, #0 /* Is there a zero byte in w1? */
|
||||
bne \label
|
||||
.endm /* magic_compare_and_branch */
|
||||
|
||||
.macro magic_find_zero_bytes w1
|
||||
/* Macro to find all-zero bytes in w1, result is in ip. */
|
||||
uadd8 ip, \w1, r6
|
||||
sel ip, r7, r6
|
||||
.endm /* magic_find_zero_bytes */
|
||||
|
||||
.macro setup_return w1 w2
|
||||
#ifdef __ARMEB__
|
||||
mov r1, \w1
|
||||
mov r2, \w2
|
||||
#else /* not __ARMEB__ */
|
||||
rev r1, \w1
|
||||
rev r2, \w2
|
||||
#endif /* not __ARMEB__ */
|
||||
.endm /* setup_return */
|
||||
|
||||
pld [r0, #0]
|
||||
pld [r1, #0]
|
||||
|
||||
/* Are both strings double-word aligned? */
|
||||
orr ip, r0, r1
|
||||
tst ip, #7
|
||||
bne .L_do_align
|
||||
|
||||
/* Fast path. */
|
||||
init
|
||||
|
||||
.L_doubleword_aligned:
|
||||
|
||||
/* Get here when the strings to compare are double-word aligned. */
|
||||
/* Compare two words in every iteration. */
|
||||
.p2align 2
|
||||
2:
|
||||
pld [r0, #16]
|
||||
pld [r1, #16]
|
||||
|
||||
/* Load the next double-word from each string. */
|
||||
ldrd r2, r3, [r0], #8
|
||||
ldrd r4, r5, [r1], #8
|
||||
|
||||
magic_compare_and_branch w1=r2, w2=r4, label=.L_return_24
|
||||
magic_compare_and_branch w1=r3, w2=r5, label=.L_return_35
|
||||
b 2b
|
||||
|
||||
.L_do_align:
|
||||
/* Is the first string word-aligned? */
|
||||
ands ip, r0, #3
|
||||
beq .L_word_aligned_r0
|
||||
|
||||
/* Fast compare byte by byte until the first string is word-aligned. */
|
||||
/* The offset of r0 from a word boundary is in ip. Thus, the number of bytes
|
||||
to read until the next word boundary is 4-ip. */
|
||||
bic r0, r0, #3
|
||||
ldr r2, [r0], #4
|
||||
lsls ip, ip, #31
|
||||
beq .L_byte2
|
||||
bcs .L_byte3
|
||||
|
||||
.L_byte1:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE1_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbz reg=r3, label=.L_fast_return
|
||||
|
||||
.L_byte2:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE2_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbz reg=r3, label=.L_fast_return
|
||||
|
||||
.L_byte3:
|
||||
ldrb ip, [r1], #1
|
||||
uxtb r3, r2, ror #BYTE3_OFFSET
|
||||
subs ip, r3, ip
|
||||
bne .L_fast_return
|
||||
m_cbnz reg=r3, label=.L_word_aligned_r0
|
||||
|
||||
.L_fast_return:
|
||||
mov r0, ip
|
||||
bx lr
|
||||
|
||||
.L_word_aligned_r0:
|
||||
init
|
||||
/* The first string is word-aligned. */
|
||||
/* Is the second string word-aligned? */
|
||||
ands ip, r1, #3
|
||||
bne .L_strcmp_unaligned
|
||||
|
||||
.L_word_aligned:
|
||||
/* The strings are word-aligned. */
|
||||
/* Is the first string double-word aligned? */
|
||||
tst r0, #4
|
||||
beq .L_doubleword_aligned_r0
|
||||
|
||||
/* If r0 is not double-word aligned yet, align it by loading
|
||||
and comparing the next word from each string. */
|
||||
ldr r2, [r0], #4
|
||||
ldr r4, [r1], #4
|
||||
magic_compare_and_branch w1=r2 w2=r4 label=.L_return_24
|
||||
|
||||
.L_doubleword_aligned_r0:
|
||||
/* Get here when r0 is double-word aligned. */
|
||||
/* Is r1 doubleword_aligned? */
|
||||
tst r1, #4
|
||||
beq .L_doubleword_aligned
|
||||
|
||||
/* Get here when the strings to compare are word-aligned,
|
||||
r0 is double-word aligned, but r1 is not double-word aligned. */
|
||||
|
||||
/* Initialize the queue. */
|
||||
ldr r5, [r1], #4
|
||||
|
||||
/* Compare two words in every iteration. */
|
||||
.p2align 2
|
||||
3:
|
||||
pld [r0, #16]
|
||||
pld [r1, #16]
|
||||
|
||||
/* Load the next double-word from each string and compare. */
|
||||
ldrd r2, r3, [r0], #8
|
||||
magic_compare_and_branch w1=r2 w2=r5 label=.L_return_25
|
||||
ldrd r4, r5, [r1], #8
|
||||
magic_compare_and_branch w1=r3 w2=r4 label=.L_return_34
|
||||
b 3b
|
||||
|
||||
.macro miscmp_word offsetlo offsethi
|
||||
/* Macro to compare misaligned strings. */
|
||||
/* r0, r1 are word-aligned, and at least one of the strings
|
||||
is not double-word aligned. */
|
||||
/* Compare one word in every loop iteration. */
|
||||
/* OFFSETLO is the original bit-offset of r1 from a word-boundary,
|
||||
OFFSETHI is 32 - OFFSETLO (i.e., offset from the next word). */
|
||||
|
||||
/* Initialize the shift queue. */
|
||||
ldr r5, [r1], #4
|
||||
|
||||
/* Compare one word from each string in every loop iteration. */
|
||||
.p2align 2
|
||||
7:
|
||||
ldr r3, [r0], #4
|
||||
S2LOMEM r5, r5, #\offsetlo
|
||||
magic_find_zero_bytes w1=r3
|
||||
cmp r7, ip, S2HIMEM #\offsetlo
|
||||
and r2, r3, r6, S2LOMEM #\offsetlo
|
||||
it eq
|
||||
cmpeq r2, r5
|
||||
bne .L_return_25
|
||||
ldr r5, [r1], #4
|
||||
cmp ip, #0
|
||||
eor r3, r2, r3
|
||||
S2HIMEM r2, r5, #\offsethi
|
||||
it eq
|
||||
cmpeq r3, r2
|
||||
bne .L_return_32
|
||||
b 7b
|
||||
.endm /* miscmp_word */
|
||||
|
||||
.L_strcmp_unaligned:
|
||||
/* r0 is word-aligned, r1 is at offset ip from a word. */
|
||||
/* Align r1 to the (previous) word-boundary. */
|
||||
bic r1, r1, #3
|
||||
|
||||
/* Unaligned comparison word by word using LDRs. */
|
||||
cmp ip, #2
|
||||
beq .L_miscmp_word_16 /* If ip == 2. */
|
||||
bge .L_miscmp_word_24 /* If ip == 3. */
|
||||
miscmp_word offsetlo=8 offsethi=24 /* If ip == 1. */
|
||||
.L_miscmp_word_24: miscmp_word offsetlo=24 offsethi=8
|
||||
|
||||
|
||||
.L_return_32:
|
||||
setup_return w1=r3, w2=r2
|
||||
b .L_do_return
|
||||
.L_return_34:
|
||||
setup_return w1=r3, w2=r4
|
||||
b .L_do_return
|
||||
.L_return_25:
|
||||
setup_return w1=r2, w2=r5
|
||||
b .L_do_return
|
||||
.L_return_35:
|
||||
setup_return w1=r3, w2=r5
|
||||
b .L_do_return
|
||||
.L_return_24:
|
||||
setup_return w1=r2, w2=r4
|
||||
|
||||
.L_do_return:
|
||||
|
||||
#ifdef __ARMEB__
|
||||
mov r0, ip
|
||||
#else /* not __ARMEB__ */
|
||||
rev r0, ip
|
||||
#endif /* not __ARMEB__ */
|
||||
|
||||
/* Restore temporaries early, before computing the return value. */
|
||||
ldrd r6, r7, [sp]
|
||||
ldrd r4, r5, [sp, #8]
|
||||
adds sp, sp, #16
|
||||
.cfi_def_cfa_offset 0
|
||||
.cfi_restore r4
|
||||
.cfi_restore r5
|
||||
.cfi_restore r6
|
||||
.cfi_restore r7
|
||||
|
||||
/* There is a zero or a different byte between r1 and r2. */
|
||||
/* r0 contains a mask of all-zero bytes in r1. */
|
||||
/* Using r0 and not ip here because cbz requires low register. */
|
||||
m_cbz reg=r0, label=.L_compute_return_value
|
||||
clz r0, r0
|
||||
/* r0 contains the number of bits on the left of the first all-zero byte in r1. */
|
||||
rsb r0, r0, #24
|
||||
/* Here, r0 contains the number of bits on the right of the first all-zero byte in r1. */
|
||||
lsr r1, r1, r0
|
||||
lsr r2, r2, r0
|
||||
|
||||
.L_compute_return_value:
|
||||
movs r0, #1
|
||||
cmp r1, r2
|
||||
/* The return value is computed as follows.
|
||||
If r1>r2 then (C==1 and Z==0) and LS doesn't hold and r0 is #1 at return.
|
||||
If r1<r2 then (C==0 and Z==0) and we execute SBC with carry_in=0,
|
||||
which means r0:=r0-r0-1 and r0 is #-1 at return.
|
||||
If r1=r2 then (C==1 and Z==1) and we execute SBC with carry_in=1,
|
||||
which means r0:=r0-r0 and r0 is #0 at return.
|
||||
(C==0 and Z==1) cannot happen because the carry bit is "not borrow". */
|
||||
it ls
|
||||
sbcls r0, r0, r0
|
||||
bx lr
|
||||
|
||||
/* The code from the previous version of strcmp.S handles this
|
||||
* particular case (the second string is 2 bytes off a word alignment)
|
||||
* faster than any current version. In this very specific case, use the
|
||||
* previous version. See bionic/libc/arch-arm/cortex-a15/bionic/strcmp.S
|
||||
* for the unedited version of this code.
|
||||
*/
|
||||
.L_miscmp_word_16:
|
||||
wp1 .req r0
|
||||
wp2 .req r1
|
||||
b1 .req r2
|
||||
w1 .req r4
|
||||
w2 .req r5
|
||||
t1 .req ip
|
||||
@ r3 is scratch
|
||||
|
||||
/* At this point, wp1 (r0) has already been word-aligned. */
|
||||
2:
|
||||
mov b1, #1
|
||||
orr b1, b1, b1, lsl #8
|
||||
orr b1, b1, b1, lsl #16
|
||||
|
||||
and t1, wp2, #3
|
||||
bic wp2, wp2, #3
|
||||
ldr w1, [wp1], #4
|
||||
ldr w2, [wp2], #4
|
||||
|
||||
/* Critical inner Loop: Block with 2 bytes initial overlap */
|
||||
.p2align 2
|
||||
2:
|
||||
S2HIMEM t1, w1, #16
|
||||
sub r3, w1, b1
|
||||
S2LOMEM t1, t1, #16
|
||||
bic r3, r3, w1
|
||||
cmp t1, w2, S2LOMEM #16
|
||||
bne 4f
|
||||
ands r3, r3, b1, lsl #7
|
||||
it eq
|
||||
ldreq w2, [wp2], #4
|
||||
bne 5f
|
||||
eor t1, t1, w1
|
||||
cmp t1, w2, S2HIMEM #16
|
||||
bne 6f
|
||||
ldr w1, [wp1], #4
|
||||
b 2b
|
||||
|
||||
5:
|
||||
#ifdef __ARMEB__
|
||||
/* The syndrome value may contain false ones if the string ends
|
||||
* with the bytes 0x01 0x00
|
||||
*/
|
||||
tst w1, #0xff000000
|
||||
it ne
|
||||
tstne w1, #0x00ff0000
|
||||
beq 7f
|
||||
#else
|
||||
lsls r3, r3, #16
|
||||
bne 7f
|
||||
#endif
|
||||
ldrh w2, [wp2]
|
||||
S2LOMEM t1, w1, #16
|
||||
#ifdef __ARMEB__
|
||||
lsl w2, w2, #16
|
||||
#endif
|
||||
b 8f
|
||||
|
||||
6:
|
||||
S2HIMEM w2, w2, #16
|
||||
S2LOMEM t1, w1, #16
|
||||
4:
|
||||
S2LOMEM w2, w2, #16
|
||||
b 8f
|
||||
|
||||
7:
|
||||
mov r0, #0
|
||||
|
||||
/* Restore registers and stack. */
|
||||
ldrd r6, r7, [sp]
|
||||
ldrd r4, r5, [sp, #8]
|
||||
adds sp, sp, #16
|
||||
.cfi_def_cfa_offset 0
|
||||
.cfi_restore r4
|
||||
.cfi_restore r5
|
||||
.cfi_restore r6
|
||||
.cfi_restore r7
|
||||
|
||||
bx lr
|
||||
|
||||
8:
|
||||
and r2, t1, #LSB
|
||||
and r0, w2, #LSB
|
||||
cmp r0, #1
|
||||
it cs
|
||||
cmpcs r0, r2
|
||||
itt eq
|
||||
S2LOMEMEQ t1, t1, #8
|
||||
S2LOMEMEQ w2, w2, #8
|
||||
beq 8b
|
||||
sub r0, r2, r0
|
||||
|
||||
/* Restore registers and stack. */
|
||||
ldrd r6, r7, [sp]
|
||||
ldrd r4, r5, [sp, #8]
|
||||
adds sp, sp, #16
|
||||
.cfi_def_cfa_offset 0
|
||||
.cfi_restore r4
|
||||
.cfi_restore r5
|
||||
.cfi_restore r6
|
||||
.cfi_restore r7
|
||||
|
||||
bx lr
|
||||
END(strcmp_krait)
|
Loading…
Reference in a new issue