Fix our <complex.h> support.

We build libm with -fvisibility=hidden, so we weren't exporting any
of the <complex.h> functions.

We also weren't building many of the functions anyway.

We were also missing the complex inverse trigonometric functions.

And because we didn't even have perfunctory "call each function once"
tests, we didn't notice that we weren't exporting any symbols, so this
patch adds at least that level of testing.

Change-Id: Ibcf2843f507126c51d134cc5fc8d67747e033a0d
This commit is contained in:
Elliott Hughes 2014-11-06 11:16:55 -08:00
parent a80f11ba99
commit b8ee16f1dc
6 changed files with 1333 additions and 5 deletions

View file

@ -18,6 +18,8 @@ libm_common_src_files += \
upstream-freebsd/lib/msun/bsdsrc/b_exp.c \
upstream-freebsd/lib/msun/bsdsrc/b_log.c \
upstream-freebsd/lib/msun/bsdsrc/b_tgamma.c \
upstream-freebsd/lib/msun/src/catrig.c \
upstream-freebsd/lib/msun/src/catrigf.c \
upstream-freebsd/lib/msun/src/e_acos.c \
upstream-freebsd/lib/msun/src/e_acosf.c \
upstream-freebsd/lib/msun/src/e_acosh.c \
@ -84,6 +86,7 @@ libm_common_src_files += \
upstream-freebsd/lib/msun/src/s_atanf.c \
upstream-freebsd/lib/msun/src/s_carg.c \
upstream-freebsd/lib/msun/src/s_cargf.c \
upstream-freebsd/lib/msun/src/s_cargl.c \
upstream-freebsd/lib/msun/src/s_cbrt.c \
upstream-freebsd/lib/msun/src/s_cbrtf.c \
upstream-freebsd/lib/msun/src/s_ccosh.c \
@ -94,20 +97,25 @@ libm_common_src_files += \
upstream-freebsd/lib/msun/src/s_cexpf.c \
upstream-freebsd/lib/msun/src/s_cimag.c \
upstream-freebsd/lib/msun/src/s_cimagf.c \
upstream-freebsd/lib/msun/src/s_cimagl.c \
upstream-freebsd/lib/msun/src/s_conj.c \
upstream-freebsd/lib/msun/src/s_conjf.c \
upstream-freebsd/lib/msun/src/s_conjl.c \
upstream-freebsd/lib/msun/src/s_copysign.c \
upstream-freebsd/lib/msun/src/s_copysignf.c \
upstream-freebsd/lib/msun/src/s_cos.c \
upstream-freebsd/lib/msun/src/s_cosf.c \
upstream-freebsd/lib/msun/src/s_cproj.c \
upstream-freebsd/lib/msun/src/s_cprojf.c \
upstream-freebsd/lib/msun/src/s_cprojl.c \
upstream-freebsd/lib/msun/src/s_creal.c \
upstream-freebsd/lib/msun/src/s_crealf.c \
upstream-freebsd/lib/msun/src/s_creall.c \
upstream-freebsd/lib/msun/src/s_csinh.c \
upstream-freebsd/lib/msun/src/s_csinhf.c \
upstream-freebsd/lib/msun/src/s_csqrt.c \
upstream-freebsd/lib/msun/src/s_csqrtf.c \
upstream-freebsd/lib/msun/src/s_csqrtl.c \
upstream-freebsd/lib/msun/src/s_ctanh.c \
upstream-freebsd/lib/msun/src/s_ctanhf.c \
upstream-freebsd/lib/msun/src/s_erf.c \
@ -174,6 +182,7 @@ libm_common_src_files += \
upstream-freebsd/lib/msun/src/s_truncf.c \
upstream-freebsd/lib/msun/src/w_cabs.c \
upstream-freebsd/lib/msun/src/w_cabsf.c \
upstream-freebsd/lib/msun/src/w_cabsl.c \
upstream-freebsd/lib/msun/src/w_drem.c \
upstream-freebsd/lib/msun/src/w_dremf.c \
@ -181,7 +190,7 @@ libm_common_src_files += \
fake_long_double.c \
signbit.c \
libm_ld_src_files = \
libm_ld128_src_files = \
upstream-freebsd/lib/msun/src/e_acosl.c \
upstream-freebsd/lib/msun/src/e_acoshl.c \
upstream-freebsd/lib/msun/src/e_asinl.c \
@ -225,7 +234,7 @@ libm_ld_src_files = \
upstream-freebsd/lib/msun/src/s_tanl.c \
upstream-freebsd/lib/msun/src/s_truncl.c \
libm_ld_src_files += \
libm_ld128_src_files += \
upstream-freebsd/lib/msun/ld128/invtrig.c \
upstream-freebsd/lib/msun/ld128/e_lgammal_r.c \
upstream-freebsd/lib/msun/ld128/k_cosl.c \
@ -282,18 +291,18 @@ LOCAL_C_INCLUDES_arm := $(LOCAL_PATH)/arm
LOCAL_SRC_FILES_arm := arm/fenv.c
LOCAL_C_INCLUDES_arm64 := $(libm_ld_includes)
LOCAL_SRC_FILES_arm64 := arm64/fenv.c $(libm_ld_src_files)
LOCAL_SRC_FILES_arm64 := arm64/fenv.c $(libm_ld128_src_files)
LOCAL_C_INCLUDES_x86 := $(LOCAL_PATH)/i387
LOCAL_SRC_FILES_x86 := i387/fenv.c
LOCAL_C_INCLUDES_x86_64 := $(libm_ld_includes)
LOCAL_SRC_FILES_x86_64 := amd64/fenv.c $(libm_ld_src_files)
LOCAL_SRC_FILES_x86_64 := amd64/fenv.c $(libm_ld128_src_files)
LOCAL_SRC_FILES_mips := mips/fenv.c
LOCAL_C_INCLUDES_mips64 := $(libm_ld_includes)
LOCAL_SRC_FILES_mips64 := mips/fenv.c $(libm_ld_src_files)
LOCAL_SRC_FILES_mips64 := mips/fenv.c $(libm_ld128_src_files)
LOCAL_CXX_STL := none
include $(BUILD_STATIC_LIBRARY)

View file

@ -46,14 +46,39 @@ _Static_assert(__generic(_Complex_I, float _Complex, 1, 0),
#define complex _Complex
#define I _Complex_I
#if __ISO_C_VISIBLE >= 2011
#ifdef __clang__
#define CMPLX(x, y) ((double complex){ x, y })
#define CMPLXF(x, y) ((float complex){ x, y })
#define CMPLXL(x, y) ((long double complex){ x, y })
#elif __GNUC_PREREQ__(4, 7)
#define CMPLX(x, y) __builtin_complex((double)(x), (double)(y))
#define CMPLXF(x, y) __builtin_complex((float)(x), (float)(y))
#define CMPLXL(x, y) __builtin_complex((long double)(x), (long double)(y))
#endif
#endif /* __ISO_C_VISIBLE >= 2011 */
__BEGIN_DECLS
#pragma GCC visibility push(default)
double cabs(double complex);
float cabsf(float complex);
long double cabsl(long double complex);
double complex cacos(double complex);
float complex cacosf(float complex);
double complex cacosh(double complex);
float complex cacoshf(float complex);
double carg(double complex);
float cargf(float complex);
long double cargl(long double complex);
double complex casin(double complex);
float complex casinf(float complex);
double complex casinh(double complex);
float complex casinhf(float complex);
double complex catan(double complex);
float complex catanf(float complex);
double complex catanh(double complex);
float complex catanhf(float complex);
double complex ccos(double complex);
float complex ccosf(float complex);
double complex ccosh(double complex);
@ -87,6 +112,7 @@ float complex ctanf(float complex);
double complex ctanh(double complex);
float complex ctanhf(float complex);
#pragma GCC visibility pop
__END_DECLS
#endif /* _COMPLEX_H */

View file

@ -0,0 +1,639 @@
/*-
* Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <complex.h>
#include <float.h>
#include "math.h"
#include "math_private.h"
#undef isinf
#define isinf(x) (fabs(x) == INFINITY)
#undef isnan
#define isnan(x) ((x) != (x))
#define raise_inexact() do { volatile float junk = 1 + tiny; } while(0)
#undef signbit
#define signbit(x) (__builtin_signbit(x))
/* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
static const double
A_crossover = 10, /* Hull et al suggest 1.5, but 10 works better */
B_crossover = 0.6417, /* suggested by Hull et al */
FOUR_SQRT_MIN = 0x1p-509, /* >= 4 * sqrt(DBL_MIN) */
QUARTER_SQRT_MAX = 0x1p509, /* <= sqrt(DBL_MAX) / 4 */
m_e = 2.7182818284590452e0, /* 0x15bf0a8b145769.0p-51 */
m_ln2 = 6.9314718055994531e-1, /* 0x162e42fefa39ef.0p-53 */
pio2_hi = 1.5707963267948966e0, /* 0x1921fb54442d18.0p-52 */
RECIP_EPSILON = 1 / DBL_EPSILON,
SQRT_3_EPSILON = 2.5809568279517849e-8, /* 0x1bb67ae8584caa.0p-78 */
SQRT_6_EPSILON = 3.6500241499888571e-8, /* 0x13988e1409212e.0p-77 */
SQRT_MIN = 0x1p-511; /* >= sqrt(DBL_MIN) */
static const volatile double
pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */
static const volatile float
tiny = 0x1p-100;
static double complex clog_for_large_values(double complex z);
/*
* Testing indicates that all these functions are accurate up to 4 ULP.
* The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
* The functions catan(h) are a little under 2 times slower than atanh.
*
* The code for casinh, casin, cacos, and cacosh comes first. The code is
* rather complicated, and the four functions are highly interdependent.
*
* The code for catanh and catan comes at the end. It is much simpler than
* the other functions, and the code for these can be disconnected from the
* rest of the code.
*/
/*
* ================================
* | casinh, casin, cacos, cacosh |
* ================================
*/
/*
* The algorithm is very close to that in "Implementing the complex arcsine
* and arccosine functions using exception handling" by T. E. Hull, Thomas F.
* Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
* Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
* http://dl.acm.org/citation.cfm?id=275324.
*
* Throughout we use the convention z = x + I*y.
*
* casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
* where
* A = (|z+I| + |z-I|) / 2
* B = (|z+I| - |z-I|) / 2 = y/A
*
* These formulas become numerically unstable:
* (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
* is, Re(casinh(z)) is close to 0);
* (b) for Im(casinh(z)) when z is close to either of the intervals
* [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
* close to PI/2).
*
* These numerical problems are overcome by defining
* f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
* Then if A < A_crossover, we use
* log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
* A-1 = f(x, 1+y) + f(x, 1-y)
* and if B > B_crossover, we use
* asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
* A-y = f(x, y+1) + f(x, y-1)
* where without loss of generality we have assumed that x and y are
* non-negative.
*
* Much of the difficulty comes because the intermediate computations may
* produce overflows or underflows. This is dealt with in the paper by Hull
* et al by using exception handling. We do this by detecting when
* computations risk underflow or overflow. The hardest part is handling the
* underflows when computing f(a, b).
*
* Note that the function f(a, b) does not appear explicitly in the paper by
* Hull et al, but the idea may be found on pages 308 and 309. Introducing the
* function f(a, b) allows us to concentrate many of the clever tricks in this
* paper into one function.
*/
/*
* Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
* Pass hypot(a, b) as the third argument.
*/
static inline double
f(double a, double b, double hypot_a_b)
{
if (b < 0)
return ((hypot_a_b - b) / 2);
if (b == 0)
return (a / 2);
return (a * a / (hypot_a_b + b) / 2);
}
/*
* All the hard work is contained in this function.
* x and y are assumed positive or zero, and less than RECIP_EPSILON.
* Upon return:
* rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
* B_is_usable is set to 1 if the value of B is usable.
* If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
* If returning sqrt_A2my2 has potential to result in an underflow, it is
* rescaled, and new_y is similarly rescaled.
*/
static inline void
do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
double *sqrt_A2my2, double *new_y)
{
double R, S, A; /* A, B, R, and S are as in Hull et al. */
double Am1, Amy; /* A-1, A-y. */
R = hypot(x, y + 1); /* |z+I| */
S = hypot(x, y - 1); /* |z-I| */
/* A = (|z+I| + |z-I|) / 2 */
A = (R + S) / 2;
/*
* Mathematically A >= 1. There is a small chance that this will not
* be so because of rounding errors. So we will make certain it is
* so.
*/
if (A < 1)
A = 1;
if (A < A_crossover) {
/*
* Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
* rx = log1p(Am1 + sqrt(Am1*(A+1)))
*/
if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) {
/*
* fp is of order x^2, and fm = x/2.
* A = 1 (inexactly).
*/
*rx = sqrt(x);
} else if (x >= DBL_EPSILON * fabs(y - 1)) {
/*
* Underflow will not occur because
* x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
*/
Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
*rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
} else if (y < 1) {
/*
* fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
* A = 1 (inexactly).
*/
*rx = x / sqrt((1 - y) * (1 + y));
} else { /* if (y > 1) */
/*
* A-1 = y-1 (inexactly).
*/
*rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
}
} else {
*rx = log(A + sqrt(A * A - 1));
}
*new_y = y;
if (y < FOUR_SQRT_MIN) {
/*
* Avoid a possible underflow caused by y/A. For casinh this
* would be legitimate, but will be picked up by invoking atan2
* later on. For cacos this would not be legitimate.
*/
*B_is_usable = 0;
*sqrt_A2my2 = A * (2 / DBL_EPSILON);
*new_y = y * (2 / DBL_EPSILON);
return;
}
/* B = (|z+I| - |z-I|) / 2 = y/A */
*B = y / A;
*B_is_usable = 1;
if (*B > B_crossover) {
*B_is_usable = 0;
/*
* Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
* sqrt_A2my2 = sqrt(Amy*(A+y))
*/
if (y == 1 && x < DBL_EPSILON / 128) {
/*
* fp is of order x^2, and fm = x/2.
* A = 1 (inexactly).
*/
*sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
} else if (x >= DBL_EPSILON * fabs(y - 1)) {
/*
* Underflow will not occur because
* x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
* and
* x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
*/
Amy = f(x, y + 1, R) + f(x, y - 1, S);
*sqrt_A2my2 = sqrt(Amy * (A + y));
} else if (y > 1) {
/*
* fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
* A = y (inexactly).
*
* y < RECIP_EPSILON. So the following
* scaling should avoid any underflow problems.
*/
*sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
sqrt((y + 1) * (y - 1));
*new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
} else { /* if (y < 1) */
/*
* fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
* A = 1 (inexactly).
*/
*sqrt_A2my2 = sqrt((1 - y) * (1 + y));
}
}
}
/*
* casinh(z) = z + O(z^3) as z -> 0
*
* casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2) as z -> infinity
* The above formula works for the imaginary part as well, because
* Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
* as z -> infinity, uniformly in y
*/
double complex
casinh(double complex z)
{
double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
int B_is_usable;
double complex w;
x = creal(z);
y = cimag(z);
ax = fabs(x);
ay = fabs(y);
if (isnan(x) || isnan(y)) {
/* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
if (isinf(x))
return (cpack(x, y + y));
/* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
if (isinf(y))
return (cpack(y, x + x));
/* casinh(NaN + I*0) = NaN + I*0 */
if (y == 0)
return (cpack(x + x, y));
/*
* All other cases involving NaN return NaN + I*NaN.
* C99 leaves it optional whether to raise invalid if one of
* the arguments is not NaN, so we opt not to raise it.
*/
return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
/* clog...() will raise inexact unless x or y is infinite. */
if (signbit(x) == 0)
w = clog_for_large_values(z) + m_ln2;
else
w = clog_for_large_values(-z) + m_ln2;
return (cpack(copysign(creal(w), x), copysign(cimag(w), y)));
}
/* Avoid spuriously raising inexact for z = 0. */
if (x == 0 && y == 0)
return (z);
/* All remaining cases are inexact. */
raise_inexact();
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (z);
do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
if (B_is_usable)
ry = asin(B);
else
ry = atan2(new_y, sqrt_A2my2);
return (cpack(copysign(rx, x), copysign(ry, y)));
}
/*
* casin(z) = reverse(casinh(reverse(z)))
* where reverse(x + I*y) = y + I*x = I*conj(z).
*/
double complex
casin(double complex z)
{
double complex w = casinh(cpack(cimag(z), creal(z)));
return (cpack(cimag(w), creal(w)));
}
/*
* cacos(z) = PI/2 - casin(z)
* but do the computation carefully so cacos(z) is accurate when z is
* close to 1.
*
* cacos(z) = PI/2 - z + O(z^3) as z -> 0
*
* cacos(z) = -sign(y)*I*clog(z) + O(1/z^2) as z -> infinity
* The above formula works for the real part as well, because
* Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
* as z -> infinity, uniformly in y
*/
double complex
cacos(double complex z)
{
double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
int sx, sy;
int B_is_usable;
double complex w;
x = creal(z);
y = cimag(z);
sx = signbit(x);
sy = signbit(y);
ax = fabs(x);
ay = fabs(y);
if (isnan(x) || isnan(y)) {
/* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
if (isinf(x))
return (cpack(y + y, -INFINITY));
/* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
if (isinf(y))
return (cpack(x + x, -y));
/* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
if (x == 0)
return (cpack(pio2_hi + pio2_lo, y + y));
/*
* All other cases involving NaN return NaN + I*NaN.
* C99 leaves it optional whether to raise invalid if one of
* the arguments is not NaN, so we opt not to raise it.
*/
return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
/* clog...() will raise inexact unless x or y is infinite. */
w = clog_for_large_values(z);
rx = fabs(cimag(w));
ry = creal(w) + m_ln2;
if (sy == 0)
ry = -ry;
return (cpack(rx, ry));
}
/* Avoid spuriously raising inexact for z = 1. */
if (x == 1 && y == 0)
return (cpack(0, -y));
/* All remaining cases are inexact. */
raise_inexact();
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (cpack(pio2_hi - (x - pio2_lo), -y));
do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
if (B_is_usable) {
if (sx == 0)
rx = acos(B);
else
rx = acos(-B);
} else {
if (sx == 0)
rx = atan2(sqrt_A2mx2, new_x);
else
rx = atan2(sqrt_A2mx2, -new_x);
}
if (sy == 0)
ry = -ry;
return (cpack(rx, ry));
}
/*
* cacosh(z) = I*cacos(z) or -I*cacos(z)
* where the sign is chosen so Re(cacosh(z)) >= 0.
*/
double complex
cacosh(double complex z)
{
double complex w;
double rx, ry;
w = cacos(z);
rx = creal(w);
ry = cimag(w);
/* cacosh(NaN + I*NaN) = NaN + I*NaN */
if (isnan(rx) && isnan(ry))
return (cpack(ry, rx));
/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
if (isnan(rx))
return (cpack(fabs(ry), rx));
/* cacosh(0 + I*NaN) = NaN + I*NaN */
if (isnan(ry))
return (cpack(ry, ry));
return (cpack(fabs(ry), copysign(rx, cimag(z))));
}
/*
* Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
*/
static double complex
clog_for_large_values(double complex z)
{
double x, y;
double ax, ay, t;
x = creal(z);
y = cimag(z);
ax = fabs(x);
ay = fabs(y);
if (ax < ay) {
t = ax;
ax = ay;
ay = t;
}
/*
* Avoid overflow in hypot() when x and y are both very large.
* Divide x and y by E, and then add 1 to the logarithm. This depends
* on E being larger than sqrt(2).
* Dividing by E causes an insignificant loss of accuracy; however
* this method is still poor since it is uneccessarily slow.
*/
if (ax > DBL_MAX / 2)
return (cpack(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));
/*
* Avoid overflow when x or y is large. Avoid underflow when x or
* y is small.
*/
if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
return (cpack(log(hypot(x, y)), atan2(y, x)));
return (cpack(log(ax * ax + ay * ay) / 2, atan2(y, x)));
}
/*
* =================
* | catanh, catan |
* =================
*/
/*
* sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
* Assumes x*x and y*y will not overflow.
* Assumes x and y are finite.
* Assumes y is non-negative.
* Assumes fabs(x) >= DBL_EPSILON.
*/
static inline double
sum_squares(double x, double y)
{
/* Avoid underflow when y is small. */
if (y < SQRT_MIN)
return (x * x);
return (x * x + y * y);
}
/*
* real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
* Assumes x and y are not NaN, and one of x and y is larger than
* RECIP_EPSILON. We avoid unwarranted underflow. It is important to not use
* the code creal(1/z), because the imaginary part may produce an unwanted
* underflow.
* This is only called in a context where inexact is always raised before
* the call, so no effort is made to avoid or force inexact.
*/
static inline double
real_part_reciprocal(double x, double y)
{
double scale;
uint32_t hx, hy;
int32_t ix, iy;
/*
* This code is inspired by the C99 document n1124.pdf, Section G.5.1,
* example 2.
*/
GET_HIGH_WORD(hx, x);
ix = hx & 0x7ff00000;
GET_HIGH_WORD(hy, y);
iy = hy & 0x7ff00000;
#define BIAS (DBL_MAX_EXP - 1)
/* XXX more guard digits are useful iff there is extra precision. */
#define CUTOFF (DBL_MANT_DIG / 2 + 1) /* just half or 1 guard digit */
if (ix - iy >= CUTOFF << 20 || isinf(x))
return (1 / x); /* +-Inf -> +-0 is special */
if (iy - ix >= CUTOFF << 20)
return (x / y / y); /* should avoid double div, but hard */
if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
return (x / (x * x + y * y));
scale = 1;
SET_HIGH_WORD(scale, 0x7ff00000 - ix); /* 2**(1-ilogb(x)) */
x *= scale;
y *= scale;
return (x / (x * x + y * y) * scale);
}
/*
* catanh(z) = log((1+z)/(1-z)) / 2
* = log1p(4*x / |z-1|^2) / 4
* + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
*
* catanh(z) = z + O(z^3) as z -> 0
*
* catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3) as z -> infinity
* The above formula works for the real part as well, because
* Re(catanh(z)) = x/|z|^2 + O(x/z^4)
* as z -> infinity, uniformly in x
*/
double complex
catanh(double complex z)
{
double x, y, ax, ay, rx, ry;
x = creal(z);
y = cimag(z);
ax = fabs(x);
ay = fabs(y);
/* This helps handle many cases. */
if (y == 0 && ax <= 1)
return (cpack(atanh(x), y));
/* To ensure the same accuracy as atan(), and to filter out z = 0. */
if (x == 0)
return (cpack(x, atan(y)));
if (isnan(x) || isnan(y)) {
/* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
if (isinf(x))
return (cpack(copysign(0, x), y + y));
/* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
if (isinf(y))
return (cpack(copysign(0, x),
copysign(pio2_hi + pio2_lo, y)));
/*
* All other cases involving NaN return NaN + I*NaN.
* C99 leaves it optional whether to raise invalid if one of
* the arguments is not NaN, so we opt not to raise it.
*/
return (cpack(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
return (cpack(real_part_reciprocal(x, y),
copysign(pio2_hi + pio2_lo, y)));
if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
/*
* z = 0 was filtered out above. All other cases must raise
* inexact, but this is the only only that needs to do it
* explicitly.
*/
raise_inexact();
return (z);
}
if (ax == 1 && ay < DBL_EPSILON)
rx = (m_ln2 - log(ay)) / 2;
else
rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;
if (ax == 1)
ry = atan2(2, -ay) / 2;
else if (ay < DBL_EPSILON)
ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
else
ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
return (cpack(copysign(rx, x), copysign(ry, y)));
}
/*
* catan(z) = reverse(catanh(reverse(z)))
* where reverse(x + I*y) = y + I*x = I*conj(z).
*/
double complex
catan(double complex z)
{
double complex w = catanh(cpack(cimag(z), creal(z)));
return (cpack(cimag(w), creal(w)));
}

View file

@ -0,0 +1,393 @@
/*-
* Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The algorithm is very close to that in "Implementing the complex arcsine
* and arccosine functions using exception handling" by T. E. Hull, Thomas F.
* Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
* Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
* http://dl.acm.org/citation.cfm?id=275324.
*
* See catrig.c for complete comments.
*
* XXX comments were removed automatically, and even short ones on the right
* of statements were removed (all of them), contrary to normal style. Only
* a few comments on the right of declarations remain.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <complex.h>
#include <float.h>
#include "math.h"
#include "math_private.h"
#undef isinf
#define isinf(x) (fabsf(x) == INFINITY)
#undef isnan
#define isnan(x) ((x) != (x))
#define raise_inexact() do { volatile float junk = 1 + tiny; } while(0)
#undef signbit
#define signbit(x) (__builtin_signbitf(x))
static const float
A_crossover = 10,
B_crossover = 0.6417,
FOUR_SQRT_MIN = 0x1p-61,
QUARTER_SQRT_MAX = 0x1p61,
m_e = 2.7182818285e0, /* 0xadf854.0p-22 */
m_ln2 = 6.9314718056e-1, /* 0xb17218.0p-24 */
pio2_hi = 1.5707962513e0, /* 0xc90fda.0p-23 */
RECIP_EPSILON = 1 / FLT_EPSILON,
SQRT_3_EPSILON = 5.9801995673e-4, /* 0x9cc471.0p-34 */
SQRT_6_EPSILON = 8.4572793338e-4, /* 0xddb3d7.0p-34 */
SQRT_MIN = 0x1p-63;
static const volatile float
pio2_lo = 7.5497899549e-8, /* 0xa22169.0p-47 */
tiny = 0x1p-100;
static float complex clog_for_large_values(float complex z);
static inline float
f(float a, float b, float hypot_a_b)
{
if (b < 0)
return ((hypot_a_b - b) / 2);
if (b == 0)
return (a / 2);
return (a * a / (hypot_a_b + b) / 2);
}
static inline void
do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
float *sqrt_A2my2, float *new_y)
{
float R, S, A;
float Am1, Amy;
R = hypotf(x, y + 1);
S = hypotf(x, y - 1);
A = (R + S) / 2;
if (A < 1)
A = 1;
if (A < A_crossover) {
if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
*rx = sqrtf(x);
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
*rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
} else if (y < 1) {
*rx = x / sqrtf((1 - y) * (1 + y));
} else {
*rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
}
} else {
*rx = logf(A + sqrtf(A * A - 1));
}
*new_y = y;
if (y < FOUR_SQRT_MIN) {
*B_is_usable = 0;
*sqrt_A2my2 = A * (2 / FLT_EPSILON);
*new_y = y * (2 / FLT_EPSILON);
return;
}
*B = y / A;
*B_is_usable = 1;
if (*B > B_crossover) {
*B_is_usable = 0;
if (y == 1 && x < FLT_EPSILON / 128) {
*sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
Amy = f(x, y + 1, R) + f(x, y - 1, S);
*sqrt_A2my2 = sqrtf(Amy * (A + y));
} else if (y > 1) {
*sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
sqrtf((y + 1) * (y - 1));
*new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
} else {
*sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
}
}
}
float complex
casinhf(float complex z)
{
float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
int B_is_usable;
float complex w;
x = crealf(z);
y = cimagf(z);
ax = fabsf(x);
ay = fabsf(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (cpackf(x, y + y));
if (isinf(y))
return (cpackf(y, x + x));
if (y == 0)
return (cpackf(x + x, y));
return (cpackf(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
if (signbit(x) == 0)
w = clog_for_large_values(z) + m_ln2;
else
w = clog_for_large_values(-z) + m_ln2;
return (cpackf(copysignf(crealf(w), x),
copysignf(cimagf(w), y)));
}
if (x == 0 && y == 0)
return (z);
raise_inexact();
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (z);
do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
if (B_is_usable)
ry = asinf(B);
else
ry = atan2f(new_y, sqrt_A2my2);
return (cpackf(copysignf(rx, x), copysignf(ry, y)));
}
float complex
casinf(float complex z)
{
float complex w = casinhf(cpackf(cimagf(z), crealf(z)));
return (cpackf(cimagf(w), crealf(w)));
}
float complex
cacosf(float complex z)
{
float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
int sx, sy;
int B_is_usable;
float complex w;
x = crealf(z);
y = cimagf(z);
sx = signbit(x);
sy = signbit(y);
ax = fabsf(x);
ay = fabsf(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (cpackf(y + y, -INFINITY));
if (isinf(y))
return (cpackf(x + x, -y));
if (x == 0)
return (cpackf(pio2_hi + pio2_lo, y + y));
return (cpackf(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
w = clog_for_large_values(z);
rx = fabsf(cimagf(w));
ry = crealf(w) + m_ln2;
if (sy == 0)
ry = -ry;
return (cpackf(rx, ry));
}
if (x == 1 && y == 0)
return (cpackf(0, -y));
raise_inexact();
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (cpackf(pio2_hi - (x - pio2_lo), -y));
do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
if (B_is_usable) {
if (sx == 0)
rx = acosf(B);
else
rx = acosf(-B);
} else {
if (sx == 0)
rx = atan2f(sqrt_A2mx2, new_x);
else
rx = atan2f(sqrt_A2mx2, -new_x);
}
if (sy == 0)
ry = -ry;
return (cpackf(rx, ry));
}
float complex
cacoshf(float complex z)
{
float complex w;
float rx, ry;
w = cacosf(z);
rx = crealf(w);
ry = cimagf(w);
if (isnan(rx) && isnan(ry))
return (cpackf(ry, rx));
if (isnan(rx))
return (cpackf(fabsf(ry), rx));
if (isnan(ry))
return (cpackf(ry, ry));
return (cpackf(fabsf(ry), copysignf(rx, cimagf(z))));
}
static float complex
clog_for_large_values(float complex z)
{
float x, y;
float ax, ay, t;
x = crealf(z);
y = cimagf(z);
ax = fabsf(x);
ay = fabsf(y);
if (ax < ay) {
t = ax;
ax = ay;
ay = t;
}
if (ax > FLT_MAX / 2)
return (cpackf(logf(hypotf(x / m_e, y / m_e)) + 1,
atan2f(y, x)));
if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
return (cpackf(logf(hypotf(x, y)), atan2f(y, x)));
return (cpackf(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
}
static inline float
sum_squares(float x, float y)
{
if (y < SQRT_MIN)
return (x * x);
return (x * x + y * y);
}
static inline float
real_part_reciprocal(float x, float y)
{
float scale;
uint32_t hx, hy;
int32_t ix, iy;
GET_FLOAT_WORD(hx, x);
ix = hx & 0x7f800000;
GET_FLOAT_WORD(hy, y);
iy = hy & 0x7f800000;
#define BIAS (FLT_MAX_EXP - 1)
#define CUTOFF (FLT_MANT_DIG / 2 + 1)
if (ix - iy >= CUTOFF << 23 || isinf(x))
return (1 / x);
if (iy - ix >= CUTOFF << 23)
return (x / y / y);
if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
return (x / (x * x + y * y));
SET_FLOAT_WORD(scale, 0x7f800000 - ix);
x *= scale;
y *= scale;
return (x / (x * x + y * y) * scale);
}
float complex
catanhf(float complex z)
{
float x, y, ax, ay, rx, ry;
x = crealf(z);
y = cimagf(z);
ax = fabsf(x);
ay = fabsf(y);
if (y == 0 && ax <= 1)
return (cpackf(atanhf(x), y));
if (x == 0)
return (cpackf(x, atanf(y)));
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (cpackf(copysignf(0, x), y + y));
if (isinf(y))
return (cpackf(copysignf(0, x),
copysignf(pio2_hi + pio2_lo, y)));
return (cpackf(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
return (cpackf(real_part_reciprocal(x, y),
copysignf(pio2_hi + pio2_lo, y)));
if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
raise_inexact();
return (z);
}
if (ax == 1 && ay < FLT_EPSILON)
rx = (m_ln2 - logf(ay)) / 2;
else
rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
if (ax == 1)
ry = atan2f(2, -ay) / 2;
else if (ay < FLT_EPSILON)
ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
else
ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
return (cpackf(copysignf(rx, x), copysignf(ry, y)));
}
float complex
catanf(float complex z)
{
float complex w = catanhf(cpackf(cimagf(z), crealf(z)));
return (cpackf(cimagf(w), crealf(w)));
}

View file

@ -54,6 +54,7 @@ test_cppflags = \
libBionicStandardTests_src_files := \
arpa_inet_test.cpp \
buffer_tests.cpp \
complex_test.cpp \
ctype_test.cpp \
dirent_test.cpp \
eventfd_test.cpp \

260
tests/complex_test.cpp Normal file
View file

@ -0,0 +1,260 @@
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
// libc++ actively gets in the way of including <complex.h> from C++, so we
// have to declare the complex math functions ourselves.
// (libc++ also seems to have really bad implementations of its own that ignore
// the intricacies of floating point math.)
// http://llvm.org/bugs/show_bug.cgi?id=21504
#include <math.h> // For M_PI.
extern "C" double cabs(double _Complex);
TEST(complex, cabs) {
ASSERT_EQ(0.0, cabs(0));
}
extern "C" float cabsf(float _Complex);
TEST(complex, cabsf) {
ASSERT_EQ(0.0, cabsf(0));
}
extern "C" long double cabsl(long double _Complex);
TEST(complex, cabsl) {
ASSERT_EQ(0.0, cabsl(0));
}
extern "C" double _Complex cacos(double _Complex);
TEST(complex, cacos) {
ASSERT_EQ(M_PI/2.0, cacos(0.0));
}
extern "C" float _Complex cacosf(float _Complex);
TEST(complex, cacosf) {
ASSERT_EQ(static_cast<float>(M_PI)/2.0f, cacosf(0.0));
}
extern "C" double _Complex cacosh(double _Complex);
TEST(complex, cacosh) {
ASSERT_EQ(0.0, cacosh(1.0));
}
extern "C" float _Complex cacoshf(float _Complex);
TEST(complex, cacoshf) {
ASSERT_EQ(0.0, cacoshf(1.0));
}
extern "C" double carg(double _Complex);
TEST(complex, carg) {
ASSERT_EQ(0.0, carg(0));
}
extern "C" float cargf(float _Complex);
TEST(complex, cargf) {
ASSERT_EQ(0.0, cargf(0));
}
extern "C" long double cargl(long double _Complex);
TEST(complex, cargl) {
ASSERT_EQ(0.0, cargl(0));
}
extern "C" double _Complex casin(double _Complex);
TEST(complex, casin) {
ASSERT_EQ(0.0, casin(0));
}
extern "C" float _Complex casinf(float _Complex);
TEST(complex, casinf) {
ASSERT_EQ(0.0, casinf(0));
}
extern "C" double _Complex casinh(double _Complex);
TEST(complex, casinh) {
ASSERT_EQ(0.0, casinh(0));
}
extern "C" float _Complex casinhf(float _Complex);
TEST(complex, casinhf) {
ASSERT_EQ(0.0, casinhf(0));
}
extern "C" double _Complex catan(double _Complex);
TEST(complex, catan) {
ASSERT_EQ(0.0, catan(0));
}
extern "C" float _Complex catanf(float _Complex);
TEST(complex, catanf) {
ASSERT_EQ(0.0, catanf(0));
}
extern "C" double _Complex catanh(double _Complex);
TEST(complex, catanh) {
ASSERT_EQ(0.0, catanh(0));
}
extern "C" float _Complex catanhf(float _Complex);
TEST(complex, catanhf) {
ASSERT_EQ(0.0, catanhf(0));
}
extern "C" double _Complex ccos(double _Complex);
TEST(complex, ccos) {
ASSERT_EQ(1.0, ccos(0));
}
extern "C" float _Complex ccosf(float _Complex);
TEST(complex, ccosf) {
ASSERT_EQ(1.0, ccosf(0));
}
extern "C" double _Complex ccosh(double _Complex);
TEST(complex, ccosh) {
ASSERT_EQ(1.0, ccosh(0));
}
extern "C" float _Complex ccoshf(float _Complex);
TEST(complex, ccoshf) {
ASSERT_EQ(1.0, ccoshf(0));
}
extern "C" double _Complex cexp(double _Complex);
TEST(complex, cexp) {
ASSERT_EQ(1.0, cexp(0));
}
extern "C" float _Complex cexpf(float _Complex);
TEST(complex, cexpf) {
ASSERT_EQ(1.0, cexpf(0));
}
extern "C" double cimag(double _Complex);
TEST(complex, cimag) {
ASSERT_EQ(0.0, cimag(0));
}
extern "C" float cimagf(float _Complex);
TEST(complex, cimagf) {
ASSERT_EQ(0.0f, cimagf(0));
}
extern "C" long double cimagl(long double _Complex);
TEST(complex, cimagl) {
ASSERT_EQ(0.0, cimagl(0));
}
extern "C" double _Complex conj(double _Complex);
TEST(complex, conj) {
ASSERT_EQ(0.0, conj(0));
}
extern "C" float _Complex conjf(float _Complex);
TEST(complex, conjf) {
ASSERT_EQ(0.0f, conjf(0));
}
extern "C" long double _Complex conjl(long double _Complex);
TEST(complex, conjl) {
ASSERT_EQ(0.0, conjl(0));
}
extern "C" double _Complex cproj(double _Complex);
TEST(complex, cproj) {
ASSERT_EQ(0.0, cproj(0));
}
extern "C" float _Complex cprojf(float _Complex);
TEST(complex, cprojf) {
ASSERT_EQ(0.0f, cprojf(0));
}
extern "C" long double _Complex cprojl(long double _Complex);
TEST(complex, cprojl) {
ASSERT_EQ(0.0, cprojl(0));
}
extern "C" double creal(double _Complex);
TEST(complex, creal) {
ASSERT_EQ(0.0, creal(0));
}
extern "C" float crealf(float _Complex);
TEST(complex, crealf) {
ASSERT_EQ(0.0f, crealf(0));
}
extern "C" long double creall(long double _Complex);
TEST(complex, creall) {
ASSERT_EQ(0.0, creall(0));
}
extern "C" double _Complex csin(double _Complex);
TEST(complex, csin) {
ASSERT_EQ(0.0, csin(0));
}
extern "C" float _Complex csinf(float _Complex);
TEST(complex, csinf) {
ASSERT_EQ(0.0, csinf(0));
}
extern "C" double _Complex csinh(double _Complex);
TEST(complex, csinh) {
ASSERT_EQ(0.0, csinh(0));
}
extern "C" float _Complex csinhf(float _Complex);
TEST(complex, csinhf) {
ASSERT_EQ(0.0, csinhf(0));
}
extern "C" double _Complex csqrt(double _Complex);
TEST(complex, csqrt) {
ASSERT_EQ(0.0, csqrt(0));
}
extern "C" float _Complex csqrtf(float _Complex);
TEST(complex, csqrtf) {
ASSERT_EQ(0.0f, csqrt(0));
}
extern "C" long double _Complex csqrtl(long double _Complex);
TEST(complex, csqrtl) {
ASSERT_EQ(0.0, csqrtl(0));
}
extern "C" double _Complex ctan(double _Complex);
TEST(complex, ctan) {
ASSERT_EQ(0.0, ctan(0));
}
extern "C" float _Complex ctanf(float _Complex);
TEST(complex, ctanf) {
ASSERT_EQ(0.0, ctanf(0));
}
extern "C" double _Complex ctanh(double _Complex);
TEST(complex, ctanh) {
ASSERT_EQ(0.0, ctanh(0));
}
extern "C" float _Complex ctanhf(float _Complex);
TEST(complex, ctanhf) {
ASSERT_EQ(0.0, ctanhf(0));
}