Merge "libm: sync with upstream." am: b838fbda2a am: 3eaf9ab52f

Original change: https://android-review.googlesource.com/c/platform/bionic/+/1947706

Change-Id: I7b361b3b77412dd1e3b80490a1230609f206ed34
This commit is contained in:
Elliott Hughes 2022-01-18 22:55:21 +00:00 committed by Automerger Merge Worker
commit c75c0a466e
33 changed files with 1065 additions and 618 deletions

View file

@ -30,8 +30,6 @@ cc_library {
whole_static_libs: ["libarm-optimized-routines-math"],
srcs: [
"upstream-freebsd/lib/msun/bsdsrc/b_exp.c",
"upstream-freebsd/lib/msun/bsdsrc/b_log.c",
"upstream-freebsd/lib/msun/bsdsrc/b_tgamma.c",
"upstream-freebsd/lib/msun/src/catrig.c",
"upstream-freebsd/lib/msun/src/catrigf.c",
@ -112,6 +110,7 @@ cc_library {
"upstream-freebsd/lib/msun/src/s_copysign.c",
"upstream-freebsd/lib/msun/src/s_copysignf.c",
"upstream-freebsd/lib/msun/src/s_cos.c",
"upstream-freebsd/lib/msun/src/s_cospi.c",
"upstream-freebsd/lib/msun/src/s_cpow.c",
"upstream-freebsd/lib/msun/src/s_cpowf.c",
"upstream-freebsd/lib/msun/src/s_cpowl.c",
@ -177,6 +176,7 @@ cc_library {
"upstream-freebsd/lib/msun/src/s_significand.c",
"upstream-freebsd/lib/msun/src/s_significandf.c",
"upstream-freebsd/lib/msun/src/s_sin.c",
"upstream-freebsd/lib/msun/src/s_sinpi.c",
"upstream-freebsd/lib/msun/src/s_sincos.c",
"upstream-freebsd/lib/msun/src/s_tan.c",
"upstream-freebsd/lib/msun/src/s_tanf.c",

View file

@ -689,6 +689,14 @@ SUCH DAMAGE.
-------------------------------------------------------------------
Copyright (c) 2005-2020 Rich Felker, et al.
Please see https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
for all contributors to musl.
-------------------------------------------------------------------
Copyright (c) 2007 David Schultz
All rights reserved.
@ -1173,6 +1181,32 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-------------------------------------------------------------------
Copyright (c) 2017 Steven G. Kargl
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice unmodified, this list of conditions, and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-------------------------------------------------------------------
From: @(#)s_ilogb.c 5.1 93/09/24
====================================================
Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

View file

@ -39,3 +39,7 @@ int digittoint(char ch);
// Similarly rename _scan_nan.
#define _scan_nan __libm_scan_nan
// FreeBSD exports these in <math.h> but we don't.
double cospi(double);
double sinpi(double);

View file

@ -33,7 +33,6 @@
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/* EXP(X)
* RETURN THE EXPONENTIAL OF X
* DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
@ -41,14 +40,14 @@ __FBSDID("$FreeBSD$");
* REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
*
* Required system supported functions:
* scalb(x,n)
* ldexp(x,n)
* copysign(x,y)
* finite(x)
* isfinite(x)
*
* Method:
* 1. Argument Reduction: given the input x, find r and integer k such
* that
* x = k*ln2 + r, |r| <= 0.5*ln2 .
* x = k*ln2 + r, |r| <= 0.5*ln2.
* r will be represented as r := z+c for better accuracy.
*
* 2. Compute exp(r) by
@ -69,105 +68,59 @@ __FBSDID("$FreeBSD$");
* with 1,156,000 random arguments on a VAX, the maximum observed
* error was 0.869 ulps (units in the last place).
*/
static const double
p1 = 1.6666666666666660e-01, /* 0x3fc55555, 0x55555553 */
p2 = -2.7777777777564776e-03, /* 0xbf66c16c, 0x16c0ac3c */
p3 = 6.6137564717940088e-05, /* 0x3f11566a, 0xb5c2ba0d */
p4 = -1.6534060280704225e-06, /* 0xbebbbd53, 0x273e8fb7 */
p5 = 4.1437773411069054e-08; /* 0x3e663f2a, 0x09c94b6c */
#include "mathimpl.h"
static const double
ln2hi = 0x1.62e42fee00000p-1, /* High 32 bits round-down. */
ln2lo = 0x1.a39ef35793c76p-33; /* Next 53 bits round-to-nearst. */
static const double p1 = 0x1.555555555553ep-3;
static const double p2 = -0x1.6c16c16bebd93p-9;
static const double p3 = 0x1.1566aaf25de2cp-14;
static const double p4 = -0x1.bbd41c5d26bf1p-20;
static const double p5 = 0x1.6376972bea4d0p-25;
static const double ln2hi = 0x1.62e42fee00000p-1;
static const double ln2lo = 0x1.a39ef35793c76p-33;
static const double lnhuge = 0x1.6602b15b7ecf2p9;
static const double lntiny = -0x1.77af8ebeae354p9;
static const double invln2 = 0x1.71547652b82fep0;
#if 0
double exp(x)
double x;
{
double z,hi,lo,c;
int k;
#if !defined(vax)&&!defined(tahoe)
if(x!=x) return(x); /* x is NaN */
#endif /* !defined(vax)&&!defined(tahoe) */
if( x <= lnhuge ) {
if( x >= lntiny ) {
/* argument reduction : x --> x - k*ln2 */
k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
/* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
hi=x-k*ln2hi;
x=hi-(lo=k*ln2lo);
/* return 2^k*[1+x+x*c/(2+c)] */
z=x*x;
c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
}
/* end of x > lntiny */
else
/* exp(-big#) underflows to zero */
if(finite(x)) return(scalb(1.0,-5000));
/* exp(-INF) is zero */
else return(0.0);
}
/* end of x < lnhuge */
else
/* exp(INF) is INF, exp(+big#) overflows to INF */
return( finite(x) ? scalb(1.0,5000) : x);
}
#endif
static const double
lnhuge = 0x1.6602b15b7ecf2p9, /* (DBL_MAX_EXP + 9) * log(2.) */
lntiny = -0x1.77af8ebeae354p9, /* (DBL_MIN_EXP - 53 - 10) * log(2.) */
invln2 = 0x1.71547652b82fep0; /* 1 / log(2.) */
/* returns exp(r = x + c) for |c| < |x| with no overlap. */
double __exp__D(x, c)
double x, c;
static double
__exp__D(double x, double c)
{
double z,hi,lo;
double hi, lo, z;
int k;
if (x != x) /* x is NaN */
if (x != x) /* x is NaN. */
return(x);
if ( x <= lnhuge ) {
if ( x >= lntiny ) {
/* argument reduction : x --> x - k*ln2 */
z = invln2*x;
k = z + copysign(.5, x);
if (x <= lnhuge) {
if (x >= lntiny) {
/* argument reduction: x --> x - k*ln2 */
z = invln2 * x;
k = z + copysign(0.5, x);
/* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
/*
* Express (x + c) - k * ln2 as hi - lo.
* Let x = hi - lo rounded.
*/
hi = x - k * ln2hi; /* Exact. */
lo = k * ln2lo - c;
x = hi - lo;
hi=(x-k*ln2hi); /* Exact. */
x= hi - (lo = k*ln2lo-c);
/* return 2^k*[1+x+x*c/(2+c)] */
z=x*x;
c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
c = (x*c)/(2.0-c);
/* Return 2^k*[1+x+x*c/(2+c)] */
z = x * x;
c = x - z * (p1 + z * (p2 + z * (p3 + z * (p4 +
z * p5))));
c = (x * c) / (2 - c);
return scalb(1.+(hi-(lo - c)), k);
return (ldexp(1 + (hi - (lo - c)), k));
} else {
/* exp(-INF) is 0. exp(-big) underflows to 0. */
return (isfinite(x) ? ldexp(1., -5000) : 0);
}
/* end of x > lntiny */
else
/* exp(-big#) underflows to zero */
if(finite(x)) return(scalb(1.0,-5000));
/* exp(-INF) is zero */
else return(0.0);
}
/* end of x < lnhuge */
else
} else
/* exp(INF) is INF, exp(+big#) overflows to INF */
return( finite(x) ? scalb(1.0,5000) : x);
return (isfinite(x) ? ldexp(1., 5000) : x);
}

View file

@ -33,10 +33,6 @@
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <math.h>
#include "mathimpl.h"
/* Table-driven natural logarithm.
*
* This code was derived, with minor modifications, from:
@ -44,25 +40,27 @@ __FBSDID("$FreeBSD$");
* Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
* Math Software, vol 16. no 4, pp 378-400, Dec 1990).
*
* Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
* Calculates log(2^m*F*(1+f/F)), |f/F| <= 1/256,
* where F = j/128 for j an integer in [0, 128].
*
* log(2^m) = log2_hi*m + log2_tail*m
* since m is an integer, the dominant term is exact.
* The leading term is exact, because m is an integer,
* m has at most 10 digits (for subnormal numbers),
* and log2_hi has 11 trailing zero bits.
*
* log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
* log(F) = logF_hi[j] + logF_lo[j] is in table below.
* logF_hi[] + 512 is exact.
*
* log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
* the leading term is calculated to extra precision in two
*
* The leading term is calculated to extra precision in two
* parts, the larger of which adds exactly to the dominant
* m and F terms.
*
* There are two cases:
* 1. when m, j are non-zero (m | j), use absolute
* 1. When m and j are non-zero (m | j), use absolute
* precision for the leading term.
* 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
* 2. When m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
* In this case, use a relative precision of 24 bits.
* (This is done differently in the original paper)
*
@ -70,11 +68,21 @@ __FBSDID("$FreeBSD$");
* 0 return signalling -Inf
* neg return signalling NaN
* +Inf return +Inf
*/
*/
#define N 128
/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
/*
* Coefficients in the polynomial approximation of log(1+f/F).
* Domain of x is [0,1./256] with 2**(-64.187) precision.
*/
static const double
A1 = 8.3333333333333329e-02, /* 0x3fb55555, 0x55555555 */
A2 = 1.2499999999943598e-02, /* 0x3f899999, 0x99991a98 */
A3 = 2.2321527525957776e-03; /* 0x3f624929, 0xe24e70be */
/*
* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
* Used for generation of extend precision logarithms.
* The constant 35184372088832 is 2^45, so the divide is exact.
* It ensures correct reading of logF_head, even for inaccurate
@ -82,12 +90,7 @@ __FBSDID("$FreeBSD$");
* right answer for integers less than 2^53.)
* Values for log(F) were generated using error < 10^-57 absolute
* with the bc -l package.
*/
static double A1 = .08333333333333178827;
static double A2 = .01250000000377174923;
static double A3 = .002232139987919447809;
static double A4 = .0004348877777076145742;
*/
static double logF_head[N+1] = {
0.,
.007782140442060381246,
@ -351,118 +354,51 @@ static double logF_tail[N+1] = {
.00000000000025144230728376072,
-.00000000000017239444525614834
};
#if 0
double
#ifdef _ANSI_SOURCE
log(double x)
#else
log(x) double x;
#endif
{
int m, j;
double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
volatile double u1;
/* Catch special cases */
if (x <= 0)
if (x == zero) /* log(0) = -Inf */
return (-one/zero);
else /* log(neg) = NaN */
return (zero/zero);
else if (!finite(x))
return (x+x); /* x = NaN, Inf */
/* Argument reduction: 1 <= g < 2; x/2^m = g; */
/* y = F*(1 + f/F) for |f| <= 2^-8 */
m = logb(x);
g = ldexp(x, -m);
if (m == -1022) {
j = logb(g), m += j;
g = ldexp(g, -j);
}
j = N*(g-1) + .5;
F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
f = g - F;
/* Approximate expansion for log(1+f/F) ~= u + q */
g = 1/(2*F+f);
u = 2*f*g;
v = u*u;
q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
/* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
* u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
* It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
*/
if (m | j)
u1 = u + 513, u1 -= 513;
/* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
* u1 = u to 24 bits.
*/
else
u1 = u, TRUNC(u1);
u2 = (2.0*(f - F*u1) - u1*f) * g;
/* u1 + u2 = 2f/(2F+f) to extra precision. */
/* log(x) = log(2^m*F*(1+f/F)) = */
/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
/* (exact) + (tiny) */
u1 += m*logF_head[N] + logF_head[j]; /* exact */
u2 = (u2 + logF_tail[j]) + q; /* tiny */
u2 += logF_tail[N]*m;
return (u1 + u2);
}
#endif
/*
* Extra precision variant, returning struct {double a, b;};
* log(x) = a+b to 63 bits, with a rounded to 26 bits.
* log(x) = a+b to 63 bits, with 'a' rounded to 24 bits.
*/
struct Double
#ifdef _ANSI_SOURCE
static struct Double
__log__D(double x)
#else
__log__D(x) double x;
#endif
{
int m, j;
double F, f, g, q, u, v, u2;
volatile double u1;
double F, f, g, q, u, v, u1, u2;
struct Double r;
/* Argument reduction: 1 <= g < 2; x/2^m = g; */
/* y = F*(1 + f/F) for |f| <= 2^-8 */
m = logb(x);
g = ldexp(x, -m);
/*
* Argument reduction: 1 <= g < 2; x/2^m = g;
* y = F*(1 + f/F) for |f| <= 2^-8
*/
g = frexp(x, &m);
g *= 2;
m--;
if (m == -1022) {
j = logb(g), m += j;
j = ilogb(g);
m += j;
g = ldexp(g, -j);
}
j = N*(g-1) + .5;
F = (1.0/N) * j + 1;
j = N * (g - 1) + 0.5;
F = (1. / N) * j + 1;
f = g - F;
g = 1/(2*F+f);
u = 2*f*g;
v = u*u;
q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
if (m | j)
u1 = u + 513, u1 -= 513;
else
u1 = u, TRUNC(u1);
u2 = (2.0*(f - F*u1) - u1*f) * g;
g = 1 / (2 * F + f);
u = 2 * f * g;
v = u * u;
q = u * v * (A1 + v * (A2 + v * A3));
if (m | j) {
u1 = u + 513;
u1 -= 513;
} else {
u1 = (float)u;
}
u2 = (2 * (f - F * u1) - u1 * f) * g;
u1 += m*logF_head[N] + logF_head[j];
u1 += m * logF_head[N] + logF_head[j];
u2 += logF_tail[j]; u2 += q;
u2 += logF_tail[N]*m;
r.a = u1 + u2; /* Only difference is here */
TRUNC(r.a);
u2 += logF_tail[j];
u2 += q;
u2 += logF_tail[N] * m;
r.a = (float)(u1 + u2); /* Only difference is here. */
r.b = (u1 - r.a) + u2;
return (r);
}

View file

@ -29,37 +29,46 @@
* SUCH DAMAGE.
*/
/*
* The original code, FreeBSD's old svn r93211, contained the following
* attribution:
*
* This code by P. McIlroy, Oct 1992;
*
* The financial support of UUNET Communications Services is greatfully
* acknowledged.
*
* The algorithm remains, but the code has been re-arranged to facilitate
* porting to other precisions.
*/
/* @(#)gamma.c 8.1 (Berkeley) 6/4/93 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <float.h>
#include "math.h"
#include "math_private.h"
/* Used in b_log.c and below. */
struct Double {
double a;
double b;
};
#include "b_log.c"
#include "b_exp.c"
/*
* This code by P. McIlroy, Oct 1992;
* The range is broken into several subranges. Each is handled by its
* helper functions.
*
* The financial support of UUNET Communications Services is greatfully
* acknowledged.
*/
#include <math.h>
#include "mathimpl.h"
/* METHOD:
* x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
* At negative integers, return NaN and raise invalid.
*
* x < 6.5:
* Use argument reduction G(x+1) = xG(x) to reach the
* range [1.066124,2.066124]. Use a rational
* approximation centered at the minimum (x0+1) to
* ensure monotonicity.
*
* x >= 6.5: Use the asymptotic approximation (Stirling's formula)
* adjusted for equal-ripples:
*
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
*
* Keep extra precision in multiplying (x-.5)(log(x)-1), to
* avoid premature round-off.
* x >= 6.0: large_gam(x)
* 6.0 > x >= xleft: small_gam(x) where xleft = 1 + left + x0.
* xleft > x > iota: smaller_gam(x) where iota = 1e-17.
* iota > x > -itoa: Handle x near 0.
* -iota > x : neg_gam
*
* Special values:
* -Inf: return NaN and raise invalid;
@ -77,201 +86,224 @@ __FBSDID("$FreeBSD$");
* Maximum observed error < 4ulp in 1,000,000 trials.
*/
static double neg_gam(double);
static double small_gam(double);
static double smaller_gam(double);
static struct Double large_gam(double);
static struct Double ratfun_gam(double, double);
/*
* Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
* [1.066.., 2.066..] accurate to 4.25e-19.
*/
#define LEFT -.3955078125 /* left boundary for rat. approx */
#define x0 .461632144968362356785 /* xmin - 1 */
#define a0_hi 0.88560319441088874992
#define a0_lo -.00000000000000004996427036469019695
#define P0 6.21389571821820863029017800727e-01
#define P1 2.65757198651533466104979197553e-01
#define P2 5.53859446429917461063308081748e-03
#define P3 1.38456698304096573887145282811e-03
#define P4 2.40659950032711365819348969808e-03
#define Q0 1.45019531250000000000000000000e+00
#define Q1 1.06258521948016171343454061571e+00
#define Q2 -2.07474561943859936441469926649e-01
#define Q3 -1.46734131782005422506287573015e-01
#define Q4 3.07878176156175520361557573779e-02
#define Q5 5.12449347980666221336054633184e-03
#define Q6 -1.76012741431666995019222898833e-03
#define Q7 9.35021023573788935372153030556e-05
#define Q8 6.13275507472443958924745652239e-06
/*
* Constants for large x approximation (x in [6, Inf])
* (Accurate to 2.8*10^-19 absolute)
*/
#define lns2pi_hi 0.418945312500000
#define lns2pi_lo -.000006779295327258219670263595
#define Pa0 8.33333333333333148296162562474e-02
#define Pa1 -2.77777777774548123579378966497e-03
#define Pa2 7.93650778754435631476282786423e-04
#define Pa3 -5.95235082566672847950717262222e-04
#define Pa4 8.41428560346653702135821806252e-04
#define Pa5 -1.89773526463879200348872089421e-03
#define Pa6 5.69394463439411649408050664078e-03
#define Pa7 -1.44705562421428915453880392761e-02
static const double zero = 0., one = 1.0, tiny = 1e-300;
double
tgamma(x)
double x;
{
struct Double u;
if (x >= 6) {
if(x > 171.63)
return (x / zero);
u = large_gam(x);
return(__exp__D(u.a, u.b));
} else if (x >= 1.0 + LEFT + x0)
return (small_gam(x));
else if (x > 1.e-17)
return (smaller_gam(x));
else if (x > -1.e-17) {
if (x != 0.0)
u.a = one - tiny; /* raise inexact */
return (one/x);
} else if (!finite(x))
return (x - x); /* x is NaN or -Inf */
else
return (neg_gam(x));
}
static const double zero = 0.;
static const volatile double tiny = 1e-300;
/*
* x >= 6
*
* Use the asymptotic approximation (Stirling's formula) adjusted fof
* equal-ripples:
*
* log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
*
* Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
* premature round-off.
*
* Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
*/
static struct Double
large_gam(x)
double x;
{
double z, p;
struct Double t, u, v;
static const double
ln2pi_hi = 0.41894531250000000,
ln2pi_lo = -6.7792953272582197e-6,
Pa0 = 8.3333333333333329e-02, /* 0x3fb55555, 0x55555555 */
Pa1 = -2.7777777777735404e-03, /* 0xbf66c16c, 0x16c145ec */
Pa2 = 7.9365079044114095e-04, /* 0x3f4a01a0, 0x183de82d */
Pa3 = -5.9523715464225254e-04, /* 0xbf438136, 0x0e681f62 */
Pa4 = 8.4161391899445698e-04, /* 0x3f4b93f8, 0x21042a13 */
Pa5 = -1.9065246069191080e-03, /* 0xbf5f3c8b, 0x357cb64e */
Pa6 = 5.9047708485785158e-03, /* 0x3f782f99, 0xdaf5d65f */
Pa7 = -1.6484018705183290e-02; /* 0xbf90e12f, 0xc4fb4df0 */
z = one/(x*x);
p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
p = p/x;
static struct Double
large_gam(double x)
{
double p, z, thi, tlo, xhi, xlo;
struct Double u;
z = 1 / (x * x);
p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
z * (Pa6 + z * Pa7))))));
p = p / x;
u = __log__D(x);
u.a -= one;
v.a = (x -= .5);
TRUNC(v.a);
v.b = x - v.a;
t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
t.b = v.b*u.a + x*u.b;
/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
t.b += lns2pi_lo; t.b += p;
u.a = lns2pi_hi + t.b; u.a += t.a;
u.b = t.a - u.a;
u.b += lns2pi_hi; u.b += t.b;
u.a -= 1;
/* Split (x - 0.5) in high and low parts. */
x -= 0.5;
xhi = (float)x;
xlo = x - xhi;
/* Compute t = (x-.5)*(log(x)-1) in extra precision. */
thi = xhi * u.a;
tlo = xlo * u.a + x * u.b;
/* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
tlo += ln2pi_lo;
tlo += p;
u.a = ln2pi_hi + tlo;
u.a += thi;
u.b = thi - u.a;
u.b += ln2pi_hi;
u.b += tlo;
return (u);
}
/*
* Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
* [1.066.., 2.066..] accurate to 4.25e-19.
*
* Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
*/
static const double
#if 0
a0_hi = 8.8560319441088875e-1,
a0_lo = -4.9964270364690197e-17,
#else
a0_hi = 8.8560319441088875e-01, /* 0x3fec56dc, 0x82a74aef */
a0_lo = -4.9642368725563397e-17, /* 0xbc8c9deb, 0xaa64afc3 */
#endif
P0 = 6.2138957182182086e-1,
P1 = 2.6575719865153347e-1,
P2 = 5.5385944642991746e-3,
P3 = 1.3845669830409657e-3,
P4 = 2.4065995003271137e-3,
Q0 = 1.4501953125000000e+0,
Q1 = 1.0625852194801617e+0,
Q2 = -2.0747456194385994e-1,
Q3 = -1.4673413178200542e-1,
Q4 = 3.0787817615617552e-2,
Q5 = 5.1244934798066622e-3,
Q6 = -1.7601274143166700e-3,
Q7 = 9.3502102357378894e-5,
Q8 = 6.1327550747244396e-6;
static struct Double
ratfun_gam(double z, double c)
{
double p, q, thi, tlo;
struct Double r;
q = Q0 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
z * (Q6 + z * (Q7 + z * Q8)))))));
p = P0 + z * (P1 + z * (P2 + z * (P3 + z * P4)));
p = p / q;
/* Split z into high and low parts. */
thi = (float)z;
tlo = (z - thi) + c;
tlo *= (thi + z);
/* Split (z+c)^2 into high and low parts. */
thi *= thi;
q = thi;
thi = (float)thi;
tlo += (q - thi);
/* Split p/q into high and low parts. */
r.a = (float)p;
r.b = p - r.a;
tlo = tlo * p + thi * r.b + a0_lo;
thi *= r.a; /* t = (z+c)^2*(P/Q) */
r.a = (float)(thi + a0_hi);
r.b = ((a0_hi - r.a) + thi) + tlo;
return (r); /* r = a0 + t */
}
/*
* x < 6
*
* Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
* 2.066124]. Use a rational approximation centered at the minimum
* (x0+1) to ensure monotonicity.
*
* Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
* It also has correct monotonicity.
*/
static const double
left = -0.3955078125, /* left boundary for rat. approx */
x0 = 4.6163214496836236e-1; /* xmin - 1 */
static double
small_gam(x)
double x;
small_gam(double x)
{
double y, ym1, t;
double t, y, ym1;
struct Double yy, r;
y = x - one;
ym1 = y - one;
if (y <= 1.0 + (LEFT + x0)) {
y = x - 1;
if (y <= 1 + (left + x0)) {
yy = ratfun_gam(y - x0, 0);
return (yy.a + yy.b);
}
r.a = y;
TRUNC(r.a);
yy.a = r.a - one;
y = ym1;
yy.b = r.b = y - yy.a;
r.a = (float)y;
yy.a = r.a - 1;
y = y - 1 ;
r.b = yy.b = y - yy.a;
/* Argument reduction: G(x+1) = x*G(x) */
for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
t = r.a*yy.a;
r.b = r.a*yy.b + y*r.b;
r.a = t;
TRUNC(r.a);
for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
t = r.a * yy.a;
r.b = r.a * yy.b + y * r.b;
r.a = (float)t;
r.b += (t - r.a);
}
/* Return r*tgamma(y). */
yy = ratfun_gam(y - x0, 0);
y = r.b*(yy.a + yy.b) + r.a*yy.b;
y += yy.a*r.a;
y = r.b * (yy.a + yy.b) + r.a * yy.b;
y += yy.a * r.a;
return (y);
}
/*
* Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
* Good on (0, 1+x0+left]. Accurate to 1 ulp.
*/
static double
smaller_gam(x)
double x;
smaller_gam(double x)
{
double t, d;
struct Double r, xx;
if (x < x0 + LEFT) {
t = x, TRUNC(t);
d = (t+x)*(x-t);
double d, rhi, rlo, t, xhi, xlo;
struct Double r;
if (x < x0 + left) {
t = (float)x;
d = (t + x) * (x - t);
t *= t;
xx.a = (t + x), TRUNC(xx.a);
xx.b = x - xx.a; xx.b += t; xx.b += d;
t = (one-x0); t += x;
d = (one-x0); d -= t; d += x;
x = xx.a + xx.b;
xhi = (float)(t + x);
xlo = x - xhi;
xlo += t;
xlo += d;
t = 1 - x0;
t += x;
d = 1 - x0;
d -= t;
d += x;
x = xhi + xlo;
} else {
xx.a = x, TRUNC(xx.a);
xx.b = x - xx.a;
xhi = (float)x;
xlo = x - xhi;
t = x - x0;
d = (-x0 -t); d += x;
d = - x0 - t;
d += x;
}
r = ratfun_gam(t, d);
d = r.a/x, TRUNC(d);
r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
return (d + r.a/x);
d = (float)(r.a / x);
r.a -= d * xhi;
r.a -= d * xlo;
r.a += r.b;
return (d + r.a / x);
}
/*
* returns (z+c)^2 * P(z)/Q(z) + a0
* x < 0
*
* Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
* At negative integers, return NaN and raise invalid.
*/
static struct Double
ratfun_gam(z, c)
double z, c;
{
double p, q;
struct Double r, t;
q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
p = p/q;
t.a = z, TRUNC(t.a); /* t ~= z + c */
t.b = (z - t.a) + c;
t.b *= (t.a + z);
q = (t.a *= t.a); /* t = (z+c)^2 */
TRUNC(t.a);
t.b += (q - t.a);
r.a = p, TRUNC(r.a); /* r = P/Q */
r.b = p - r.a;
t.b = t.b*p + t.a*r.b + a0_lo;
t.a *= r.a; /* t = (z+c)^2*(P/Q) */
r.a = t.a + a0_hi, TRUNC(r.a);
r.b = ((a0_hi-r.a) + t.a) + t.b;
return (r); /* r = a0 + t */
}
static double
neg_gam(x)
double x;
neg_gam(double x)
{
int sgn = 1;
struct Double lg, lsine;
@ -280,23 +312,29 @@ neg_gam(x)
y = ceil(x);
if (y == x) /* Negative integer. */
return ((x - x) / zero);
z = y - x;
if (z > 0.5)
z = one - z;
y = 0.5 * y;
z = 1 - z;
y = y / 2;
if (y == ceil(y))
sgn = -1;
if (z < .25)
z = sin(M_PI*z);
if (z < 0.25)
z = sinpi(z);
else
z = cos(M_PI*(0.5-z));
z = cospi(0.5 - z);
/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
if (x < -170) {
if (x < -190)
return ((double)sgn*tiny*tiny);
y = one - x; /* exact: 128 < |x| < 255 */
return (sgn * tiny * tiny);
y = 1 - x; /* exact: 128 < |x| < 255 */
lg = large_gam(y);
lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
lsine = __log__D(M_PI / z); /* = TRUNC(log(u)) + small */
lg.a -= lsine.a; /* exact (opposite signs) */
lg.b -= lsine.b;
y = -(lg.a + lg.b);
@ -305,11 +343,58 @@ neg_gam(x)
if (sgn < 0) y = -y;
return (y);
}
y = one-x;
if (one-y == x)
y = 1 - x;
if (1 - y == x)
y = tgamma(y);
else /* 1-x is inexact */
y = -x*tgamma(-x);
y = - x * tgamma(-x);
if (sgn < 0) y = -y;
return (M_PI / (y*z));
return (M_PI / (y * z));
}
/*
* xmax comes from lgamma(xmax) - emax * log(2) = 0.
* static const float xmax = 35.040095f
* static const double xmax = 171.624376956302725;
* ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
* ld128: 1.75554834290446291700388921607020320e+03L,
*
* iota is a sloppy threshold to isolate x = 0.
*/
static const double xmax = 171.624376956302725;
static const double iota = 0x1p-56;
double
tgamma(double x)
{
struct Double u;
if (x >= 6) {
if (x > xmax)
return (x / zero);
u = large_gam(x);
return (__exp__D(u.a, u.b));
}
if (x >= 1 + left + x0)
return (small_gam(x));
if (x > iota)
return (smaller_gam(x));
if (x > -iota) {
if (x != 0.)
u.a = 1 - tiny; /* raise inexact */
return (1 / x);
}
if (!isfinite(x))
return (x - x); /* x is NaN or -Inf */
return (neg_gam(x));
}
#if (LDBL_MANT_DIG == 53)
__weak_reference(tgamma, tgammal);
#endif

View file

@ -21,8 +21,8 @@ __FBSDID("$FreeBSD$");
#include "math_private.h"
/*
* Domain [-0.7854, 0.7854], range ~[-1.80e-37, 1.79e-37]:
* |cos(x) - c(x))| < 2**-122.0
* Domain [-0.7854, 0.7854], range ~[-1.17e-39, 1.19e-39]:
* |cos(x) - c(x))| < 2**-129.3
*
* 113-bit precision requires more care than 64-bit precision, since
* simple methods give a minimax polynomial with coefficient for x^2
@ -31,21 +31,19 @@ __FBSDID("$FreeBSD$");
*/
static const double
one = 1.0;
static const long double
C1 = 0.04166666666666666666666666666666658424671L,
C2 = -0.001388888888888888888888888888863490893732L,
C3 = 0.00002480158730158730158730158600795304914210L,
C4 = -0.2755731922398589065255474947078934284324e-6L,
C5 = 0.2087675698786809897659225313136400793948e-8L,
C6 = -0.1147074559772972315817149986812031204775e-10L,
C7 = 0.4779477332386808976875457937252120293400e-13L;
static const double
C8 = -0.1561920696721507929516718307820958119868e-15,
C9 = 0.4110317413744594971475941557607804508039e-18,
C10 = -0.8896592467191938803288521958313920156409e-21,
C11 = 0.1601061435794535138244346256065192782581e-23;
C1 = 4.16666666666666666666666666666666667e-02L,
C2 = -1.38888888888888888888888888888888834e-03L,
C3 = 2.48015873015873015873015873015446795e-05L,
C4 = -2.75573192239858906525573190949988493e-07L,
C5 = 2.08767569878680989792098886701451072e-09L,
C6 = -1.14707455977297247136657111139971865e-11L,
C7 = 4.77947733238738518870113294139830239e-14L,
C8 = -1.56192069685858079920640872925306403e-16L,
C9 = 4.11031762320473354032038893429515732e-19L,
C10= -8.89679121027589608738005163931958096e-22L,
C11= 1.61171797801314301767074036661901531e-24L,
C12= -2.46748624357670948912574279501044295e-27L;
long double
__kernel_cosl(long double x, long double y)
@ -54,7 +52,7 @@ __kernel_cosl(long double x, long double y)
z = x*x;
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+
z*(C8+z*(C9+z*(C10+z*C11))))))))));
z*(C8+z*(C9+z*(C10+z*(C11+z*C12)))))))))));
hz = 0.5*z;
w = one-hz;
return w + (((one-w)-hz) + (z*r-x*y));

View file

@ -697,14 +697,15 @@ invln10_hi = 4.3429448176175356e-1, /* 0x1bcb7b15000000.0p-54 */
invln2_hi = 1.4426950402557850e0; /* 0x17154765000000.0p-52 */
static const long double
invln10_lo = 1.41498268538580090791605082294397000e-10L, /* 0x137287195355baaafad33dc323ee3.0p-145L */
invln2_lo = 6.33178418956604368501892137426645911e-10L; /* 0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */
invln2_lo = 6.33178418956604368501892137426645911e-10L, /* 0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */
invln10_lo_plus_hi = invln10_lo + invln10_hi,
invln2_lo_plus_hi = invln2_lo + invln2_hi;
long double
log10l(long double x)
{
struct ld r;
long double lo;
float hi;
long double hi, lo;
ENTERI();
DOPRINT_START(&x);
@ -712,18 +713,17 @@ log10l(long double x)
if (!r.lo_set)
RETURNPI(r.hi);
_2sumF(r.hi, r.lo);
hi = r.hi;
hi = (float)r.hi;
lo = r.lo + (r.hi - hi);
RETURN2PI(invln10_hi * hi,
(invln10_lo + invln10_hi) * lo + invln10_lo * hi);
invln10_lo_plus_hi * lo + invln10_lo * hi);
}
long double
log2l(long double x)
{
struct ld r;
long double lo;
float hi;
long double hi, lo;
ENTERI();
DOPRINT_START(&x);
@ -731,10 +731,10 @@ log2l(long double x)
if (!r.lo_set)
RETURNPI(r.hi);
_2sumF(r.hi, r.lo);
hi = r.hi;
hi = (float)r.hi;
lo = r.lo + (r.hi - hi);
RETURN2PI(invln2_hi * hi,
(invln2_lo + invln2_hi) * lo + invln2_lo * hi);
invln2_lo_plus_hi * lo + invln2_lo * hi);
}
#endif /* STRUCT_RETURN */

View file

@ -82,7 +82,7 @@ hypotl(long double x, long double y)
man_t manh, manl;
GET_LDBL_MAN(manh,manl,b);
if((manh|manl)==0) return a;
t1=0;
t1=1;
SET_HIGH_WORD(t1,ESW(MAX_EXP-2)); /* t1=2^(MAX_EXP-2) */
b *= t1;
a *= t1;

View file

@ -136,7 +136,7 @@ __ieee754_powf(float x, float y)
/* |y| is huge */
if(iy>0x4d000000) { /* if |y| > 2**27 */
/* over/underflow if x is not close to one */
if(ix<0x3f7ffff8) return (hy<0)? sn*huge*huge:sn*tiny*tiny;
if(ix<0x3f7ffff6) return (hy<0)? sn*huge*huge:sn*tiny*tiny;
if(ix>0x3f800007) return (hy>0)? sn*huge*huge:sn*tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */

View file

@ -14,6 +14,18 @@
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <float.h>
#include "math.h"
#include "math_private.h"
#ifdef USE_BUILTIN_SQRT
double
__ieee754_sqrt(double x)
{
return (__builtin_sqrt(x));
}
#else
/* __ieee754_sqrt(x)
* Return correctly rounded sqrt.
* ------------------------------------------
@ -84,11 +96,6 @@ __FBSDID("$FreeBSD$");
*---------------
*/
#include <float.h>
#include "math.h"
#include "math_private.h"
static const double one = 1.0, tiny=1.0e-300;
double
@ -187,6 +194,7 @@ __ieee754_sqrt(double x)
INSERT_WORDS(z,ix0,ix1);
return z;
}
#endif
#if (LDBL_MANT_DIG == 53)
__weak_reference(sqrt, sqrtl);

View file

@ -20,6 +20,13 @@ static char rcsid[] = "$FreeBSD$";
#include "math.h"
#include "math_private.h"
#ifdef USE_BUILTIN_SQRTF
float
__ieee754_sqrtf(float x)
{
return (__builtin_sqrtf(x));
}
#else
static const float one = 1.0, tiny=1.0e-30;
float
@ -87,3 +94,4 @@ __ieee754_sqrtf(float x)
SET_FLOAT_WORD(z,ix);
return z;
}
#endif

View file

@ -0,0 +1,44 @@
/*-
* Copyright (c) 2017 Steven G. Kargl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The basic kernel for x in [0,0.25]. To use the kernel for cos(x), the
* argument to __kernel_cospi() must be multiplied by pi.
*/
static inline double
__kernel_cospi(double x)
{
double_t hi, lo;
hi = (float)x;
lo = x - hi;
lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
hi *= pi_hi;
_2sumF(hi, lo);
return (__kernel_cos(hi, lo));
}

View file

@ -76,13 +76,6 @@ __kernel_sincosl(long double x, long double y, int iy, long double *sn,
#elif LDBL_MANT_DIG == 113 /* ld128 version of k_sincosl.c. */
static const long double
C1 = 0.04166666666666666666666666666666658424671L,
C2 = -0.001388888888888888888888888888863490893732L,
C3 = 0.00002480158730158730158730158600795304914210L,
C4 = -0.2755731922398589065255474947078934284324e-6L,
C5 = 0.2087675698786809897659225313136400793948e-8L,
C6 = -0.1147074559772972315817149986812031204775e-10L,
C7 = 0.4779477332386808976875457937252120293400e-13L,
S1 = -0.16666666666666666666666666666666666606732416116558L,
S2 = 0.0083333333333333333333333333333331135404851288270047L,
S3 = -0.00019841269841269841269841269839935785325638310428717L,
@ -93,15 +86,25 @@ S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
static const double
C8 = -0.1561920696721507929516718307820958119868e-15,
C9 = 0.4110317413744594971475941557607804508039e-18,
C10 = -0.8896592467191938803288521958313920156409e-21,
C11 = 0.1601061435794535138244346256065192782581e-23,
S9 = -0.82206352458348947812512122163446202498005154296863e-17,
S10 = 0.19572940011906109418080609928334380560135358385256e-19,
S11 = -0.38680813379701966970673724299207480965452616911420e-22,
S12 = 0.64038150078671872796678569586315881020659912139412e-25;
static const long double
C1 = 4.16666666666666666666666666666666667e-02L,
C2 = -1.38888888888888888888888888888888834e-03L,
C3 = 2.48015873015873015873015873015446795e-05L,
C4 = -2.75573192239858906525573190949988493e-07L,
C5 = 2.08767569878680989792098886701451072e-09L,
C6 = -1.14707455977297247136657111139971865e-11L,
C7 = 4.77947733238738518870113294139830239e-14L,
C8 = -1.56192069685858079920640872925306403e-16L,
C9 = 4.11031762320473354032038893429515732e-19L,
C10= -8.89679121027589608738005163931958096e-22L,
C11= 1.61171797801314301767074036661901531e-24L,
C12= -2.46748624357670948912574279501044295e-27L;
static inline void
__kernel_sincosl(long double x, long double y, int iy, long double *sn,
long double *cs)
@ -120,12 +123,12 @@ __kernel_sincosl(long double x, long double y, int iy, long double *sn,
if (iy == 0)
*sn = x + v * (S1 + z * r);
else
*cs = x - ((z * (y / 2 - v * r) - y) - v * S1);
*sn = x - ((z * (y / 2 - v * r) - y) - v * S1);
hz = z / 2;
w = 1 - hz;
r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * (C6 +
z * (C7 + z * (C8 + z * (C9 + z * (C10 + z * C11))))))))));
z * (C7 + z * (C8 + z * (C9 + z * (C10 + z * (C11+z*C12)))))))))));
*cs = w + (((1 - w) - hz) + (z * r - x * y));
}

View file

@ -0,0 +1,43 @@
/*-
* Copyright (c) 2017 Steven G. Kargl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The basic kernel for x in [0,0.25]. To use the kernel for sin(x), the
* argument to __kernel_sinpi() must be multiplied by pi.
*/
static inline double
__kernel_sinpi(double x)
{
double_t hi, lo;
hi = (float)x;
lo = x - hi;
lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
hi *= pi_hi;
_2sumF(hi, lo);
return (__kernel_sin(hi, lo, 1));
}

View file

@ -30,6 +30,7 @@
__FBSDID("$FreeBSD$");
#include <complex.h>
#include <float.h>
#include <math.h>
#include "math_private.h"
@ -41,7 +42,7 @@ cexp_ovfl = 0x4096b8e4; /* (MAX_EXP - MIN_DENORM_EXP) * ln2 */
double complex
cexp(double complex z)
{
double x, y, exp_x;
double c, exp_x, s, x, y;
uint32_t hx, hy, lx, ly;
x = creal(z);
@ -55,8 +56,10 @@ cexp(double complex z)
return (CMPLX(exp(x), y));
EXTRACT_WORDS(hx, lx, x);
/* cexp(0 + I y) = cos(y) + I sin(y) */
if (((hx & 0x7fffffff) | lx) == 0)
return (CMPLX(cos(y), sin(y)));
if (((hx & 0x7fffffff) | lx) == 0) {
sincos(y, &s, &c);
return (CMPLX(c, s));
}
if (hy >= 0x7ff00000) {
if (lx != 0 || (hx & 0x7fffffff) != 0x7ff00000) {
@ -86,6 +89,11 @@ cexp(double complex z)
* - x = NaN (spurious inexact exception from y)
*/
exp_x = exp(x);
return (CMPLX(exp_x * cos(y), exp_x * sin(y)));
sincos(y, &s, &c);
return (CMPLX(exp_x * c, exp_x * s));
}
}
#if (LDBL_MANT_DIG == 53)
__weak_reference(cexp, cexpl);
#endif

View file

@ -41,7 +41,7 @@ cexp_ovfl = 0x43400074; /* (MAX_EXP - MIN_DENORM_EXP) * ln2 */
float complex
cexpf(float complex z)
{
float x, y, exp_x;
float c, exp_x, s, x, y;
uint32_t hx, hy;
x = crealf(z);
@ -55,8 +55,10 @@ cexpf(float complex z)
return (CMPLXF(expf(x), y));
GET_FLOAT_WORD(hx, x);
/* cexp(0 + I y) = cos(y) + I sin(y) */
if ((hx & 0x7fffffff) == 0)
return (CMPLXF(cosf(y), sinf(y)));
if ((hx & 0x7fffffff) == 0) {
sincosf(y, &s, &c);
return (CMPLXF(c, s));
}
if (hy >= 0x7f800000) {
if ((hx & 0x7fffffff) != 0x7f800000) {
@ -86,6 +88,7 @@ cexpf(float complex z)
* - x = NaN (spurious inexact exception from y)
*/
exp_x = expf(x);
return (CMPLXF(exp_x * cosf(y), exp_x * sinf(y)));
sincosf(y, &s, &c);
return (CMPLXF(exp_x * c, exp_x * s));
}
}

View file

@ -39,12 +39,17 @@ __FBSDID("$FreeBSD$");
#include <ieeefp.h>
#endif
#include "fpmath.h"
#include "math.h"
#include "math_private.h"
#if LDBL_MANT_DIG == 64
#include "../ld80/e_rem_pio2l.h"
static const union IEEEl2bits
pio4u = LD80C(0xc90fdaa22168c235, -00001, 7.85398163397448309628e-01L);
#define pio4 (pio4u.e)
#elif LDBL_MANT_DIG == 113
#include "../ld128/e_rem_pio2l.h"
long double pio4 = 7.85398163397448309615660845819875721e-1L;
#else
#error "Unsupported long double format"
#endif
@ -71,7 +76,7 @@ cosl(long double x)
ENTERI();
/* Optimize the case where x is already within range. */
if (z.e < M_PI_4)
if (z.e < pio4)
RETURNI(__kernel_cosl(z.e, 0));
e0 = __ieee754_rem_pio2l(x, y);

View file

@ -0,0 +1,152 @@
/*-
* Copyright (c) 2017 Steven G. Kargl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* cospi(x) computes cos(pi*x) without multiplication by pi (almost). First,
* note that cospi(-x) = cospi(x), so the algorithm considers only |x|. The
* method used depends on the magnitude of x.
*
* 1. For small |x|, cospi(x) = 1 with FE_INEXACT raised where a sloppy
* threshold is used. The threshold is |x| < 0x1pN with N = -(P/2+M).
* P is the precision of the floating-point type and M = 2 to 4.
*
* 2. For |x| < 1, argument reduction is not required and sinpi(x) is
* computed by calling a kernel that leverages the kernels for sin(x)
* ans cos(x). See k_sinpi.c and k_cospi.c for details.
*
* 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where
* |x| = j0 + r with j0 an integer and the remainder r satisfies
* 0 <= r < 1. With the given domain, a simplified inline floor(x)
* is used. Also, note the following identity
*
* cospi(x) = cos(pi*(j0+r))
* = cos(pi*j0) * cos(pi*r) - sin(pi*j0) * sin(pi*r)
* = cos(pi*j0) * cos(pi*r)
* = +-cospi(r)
*
* If j0 is even, then cos(pi*j0) = 1. If j0 is odd, then cos(pi*j0) = -1.
* cospi(r) is then computed via an appropriate kernel.
*
* 4. For |x| >= 0x1p(P-1), |x| is integral and cospi(x) = 1.
*
* 5. Special cases:
*
* cospi(+-0) = 1.
* cospi(n.5) = 0 for n an integer.
* cospi(+-inf) = nan. Raises the "invalid" floating-point exception.
* cospi(nan) = nan. Raises the "invalid" floating-point exception.
*/
#include <float.h>
#include "math.h"
#include "math_private.h"
static const double
pi_hi = 3.1415926814079285e+00, /* 0x400921fb 0x58000000 */
pi_lo =-2.7818135228334233e-08; /* 0xbe5dde97 0x3dcb3b3a */
#include "k_cospi.h"
#include "k_sinpi.h"
volatile static const double vzero = 0;
double
cospi(double x)
{
double ax, c;
uint32_t hx, ix, j0, lx;
EXTRACT_WORDS(hx, lx, x);
ix = hx & 0x7fffffff;
INSERT_WORDS(ax, ix, lx);
if (ix < 0x3ff00000) { /* |x| < 1 */
if (ix < 0x3fd00000) { /* |x| < 0.25 */
if (ix < 0x3e200000) { /* |x| < 0x1p-29 */
if ((int)ax == 0)
return (1);
}
return (__kernel_cospi(ax));
}
if (ix < 0x3fe00000) /* |x| < 0.5 */
c = __kernel_sinpi(0.5 - ax);
else if (ix < 0x3fe80000){ /* |x| < 0.75 */
if (ax == 0.5)
return (0);
c = -__kernel_sinpi(ax - 0.5);
} else
c = -__kernel_cospi(1 - ax);
return (c);
}
if (ix < 0x43300000) { /* 1 <= |x| < 0x1p52 */
/* Determine integer part of ax. */
j0 = ((ix >> 20) & 0x7ff) - 0x3ff;
if (j0 < 20) {
ix &= ~(0x000fffff >> j0);
lx = 0;
} else {
lx &= ~((uint32_t)0xffffffff >> (j0 - 20));
}
INSERT_WORDS(x, ix, lx);
ax -= x;
EXTRACT_WORDS(ix, lx, ax);
if (ix < 0x3fe00000) { /* |x| < 0.5 */
if (ix < 0x3fd00000) /* |x| < 0.25 */
c = ix == 0 ? 1 : __kernel_cospi(ax);
else
c = __kernel_sinpi(0.5 - ax);
} else {
if (ix < 0x3fe80000) { /* |x| < 0.75 */
if (ax == 0.5)
return (0);
c = -__kernel_sinpi(ax - 0.5);
} else
c = -__kernel_cospi(1 - ax);
}
if (j0 > 30)
x -= 0x1p30;
j0 = (uint32_t)x;
return (j0 & 1 ? -c : c);
}
if (ix >= 0x7f800000)
return (vzero / vzero);
/*
* |x| >= 0x1p52 is always an even integer, so return 1.
*/
return (1);
}
#if LDBL_MANT_DIG == 53
__weak_reference(cospi, cospil);
#endif

View file

@ -111,11 +111,13 @@ ctanh(double complex z)
}
/*
* ctanh(x + I NaN) = d(NaN) + I d(NaN)
* ctanh(x +- I Inf) = dNaN + I dNaN
* ctanh(+-0 + i NAN) = +-0 + i NaN
* ctanh(+-0 +- i Inf) = +-0 + i NaN
* ctanh(x + i NAN) = NaN + i NaN
* ctanh(x +- i Inf) = NaN + i NaN
*/
if (!isfinite(y))
return (CMPLX(y - y, y - y));
return (CMPLX(x ? y - y : x, y - y));
/*
* ctanh(+-huge +- I y) ~= +-1 +- I 2sin(2y)/exp(2x), using the

View file

@ -61,7 +61,7 @@ ctanhf(float complex z)
}
if (!isfinite(y))
return (CMPLXF(y - y, y - y));
return (CMPLXF(ix ? y - y : x, y - y));
if (ix >= 0x41300000) { /* |x| >= 11 */
float exp_mx = expf(-fabsf(x));

View file

@ -35,6 +35,13 @@ __FBSDID("$FreeBSD$");
#include "math_private.h"
#ifdef USE_BUILTIN_FMA
double
fma(double x, double y, double z)
{
return (__builtin_fma(x, y, z));
}
#else
/*
* A struct dd represents a floating-point number with twice the precision
* of a double. We maintain the invariant that "hi" stores the 53 high-order
@ -284,6 +291,7 @@ fma(double x, double y, double z)
else
return (add_and_denormalize(r.hi, adj, spread));
}
#endif /* !USE_BUILTIN_FMA */
#if (LDBL_MANT_DIG == 53)
__weak_reference(fma, fmal);

View file

@ -34,6 +34,13 @@ __FBSDID("$FreeBSD$");
#include "math.h"
#include "math_private.h"
#ifdef USE_BUILTIN_FMAF
float
fmaf(float x, float y, float z)
{
return (__builtin_fmaf(x, y, z));
}
#else
/*
* Fused multiply-add: Compute x * y + z with a single rounding error.
*
@ -69,3 +76,4 @@ fmaf(float x, float y, float z)
SET_LOW_WORD(adjusted_result, lr + 1);
return (adjusted_result);
}
#endif /* !USE_BUILTIN_FMAF */

View file

@ -34,6 +34,13 @@ __FBSDID("$FreeBSD$");
#include "fpmath.h"
#ifdef USE_BUILTIN_FMAX
double
fmax(double x, double y)
{
return (__builtin_fmax(x, y));
}
#else
double
fmax(double x, double y)
{
@ -54,6 +61,7 @@ fmax(double x, double y)
return (x > y ? x : y);
}
#endif
#if (LDBL_MANT_DIG == 53)
__weak_reference(fmax, fmaxl);

View file

@ -33,6 +33,13 @@ __FBSDID("$FreeBSD$");
#include "fpmath.h"
#ifdef USE_BUILTIN_FMAXF
float
fmaxf(float x, float y)
{
return (__builtin_fmaxf(x, y));
}
#else
float
fmaxf(float x, float y)
{
@ -53,3 +60,4 @@ fmaxf(float x, float y)
return (x > y ? x : y);
}
#endif

View file

@ -34,6 +34,13 @@ __FBSDID("$FreeBSD$");
#include "fpmath.h"
#ifdef USE_BUILTIN_FMIN
double
fmin(double x, double y)
{
return (__builtin_fmin(x, y));
}
#else
double
fmin(double x, double y)
{
@ -54,6 +61,7 @@ fmin(double x, double y)
return (x < y ? x : y);
}
#endif
#if (LDBL_MANT_DIG == 53)
__weak_reference(fmin, fminl);

View file

@ -33,6 +33,13 @@ __FBSDID("$FreeBSD$");
#include "fpmath.h"
#ifdef USE_BUILTIN_FMINF
float
fminf(float x, float y)
{
return (__builtin_fminf(x, y));
}
#else
float
fminf(float x, float y)
{
@ -53,3 +60,4 @@ fminf(float x, float y)
return (x < y ? x : y);
}
#endif

View file

@ -49,9 +49,11 @@ __FBSDID("$FreeBSD$");
* that everything is in range. At compile time, INRANGE(x) should reduce to
* two floating-point comparisons in the former case, or TRUE otherwise.
*/
static const type type_min = (type)DTYPE_MIN;
static const type type_max = (type)DTYPE_MAX;
static const type dtype_min = (type)DTYPE_MIN - 0.5;
static const type dtype_max = (type)DTYPE_MAX + 0.5;
#define INRANGE(x) (dtype_max - (type)DTYPE_MAX != 0.5 || \
#define INRANGE(x) (dtype_max - type_max != 0.5 || \
((x) > dtype_min && (x) < dtype_max))
dtype

View file

@ -1,66 +1,47 @@
/* @(#)s_scalbn.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005-2020 Rich Felker, et al.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
* SPDX-License-Identifier: MIT
*
* Please see https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
* for all contributors to musl.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* scalbn (double x, int n)
* scalbn(x,n) returns x* 2**n computed by exponent
* manipulation rather than by actually performing an
* exponentiation or a multiplication.
*/
#include <float.h>
#include <math.h>
#include <stdint.h>
#include "math.h"
#include "math_private.h"
static const double
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
huge = 1.0e+300,
tiny = 1.0e-300;
double
scalbn (double x, int n)
double scalbn(double x, int n)
{
int32_t k,hx,lx;
EXTRACT_WORDS(hx,lx,x);
k = (hx&0x7ff00000)>>20; /* extract exponent */
if (k==0) { /* 0 or subnormal x */
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
x *= two54;
GET_HIGH_WORD(hx,x);
k = ((hx&0x7ff00000)>>20) - 54;
if (n< -50000) return tiny*x; /*underflow*/
}
if (k==0x7ff) return x+x; /* NaN or Inf */
k = k+n;
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
if (k > 0) /* normal result */
{SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
if (k <= -54) {
if (n > 50000) /* in case integer overflow in n+k */
return huge*copysign(huge,x); /*overflow*/
else
return tiny*copysign(tiny,x); /*underflow*/
union {double f; uint64_t i;} u;
double_t y = x;
if (n > 1023) {
y *= 0x1p1023;
n -= 1023;
if (n > 1023) {
y *= 0x1p1023;
n -= 1023;
if (n > 1023)
n = 1023;
}
} else if (n < -1022) {
/* make sure final n < -53 to avoid double
rounding in the subnormal range */
y *= 0x1p-1022 * 0x1p53;
n += 1022 - 53;
if (n < -1022) {
y *= 0x1p-1022 * 0x1p53;
n += 1022 - 53;
if (n < -1022)
n = -1022;
}
}
k += 54; /* subnormal result */
SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
return x*twom54;
u.i = (uint64_t)(0x3ff+n)<<52;
x = y * u.f;
return x;
}
#if (LDBL_MANT_DIG == 53)
#if (LDBL_MANT_DIG == 53) && !defined(scalbn)
__weak_reference(scalbn, ldexpl);
__weak_reference(scalbn, scalbnl);
#endif

View file

@ -1,57 +1,41 @@
/* s_scalbnf.c -- float version of s_scalbn.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005-2020 Rich Felker, et al.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
* SPDX-License-Identifier: MIT
*
* Please see https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
* for all contributors to musl.
*/
#include <math.h>
#include <stdint.h>
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "math.h"
#include "math_private.h"
static const float
two25 = 3.355443200e+07, /* 0x4c000000 */
twom25 = 2.9802322388e-08, /* 0x33000000 */
huge = 1.0e+30,
tiny = 1.0e-30;
float
scalbnf (float x, int n)
float scalbnf(float x, int n)
{
int32_t k,ix;
GET_FLOAT_WORD(ix,x);
k = (ix&0x7f800000)>>23; /* extract exponent */
if (k==0) { /* 0 or subnormal x */
if ((ix&0x7fffffff)==0) return x; /* +-0 */
x *= two25;
GET_FLOAT_WORD(ix,x);
k = ((ix&0x7f800000)>>23) - 25;
if (n< -50000) return tiny*x; /*underflow*/
}
if (k==0xff) return x+x; /* NaN or Inf */
k = k+n;
if (k > 0xfe) return huge*copysignf(huge,x); /* overflow */
if (k > 0) /* normal result */
{SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x;}
if (k <= -25) {
if (n > 50000) /* in case integer overflow in n+k */
return huge*copysignf(huge,x); /*overflow*/
else
return tiny*copysignf(tiny,x); /*underflow*/
union {float f; uint32_t i;} u;
float_t y = x;
if (n > 127) {
y *= 0x1p127f;
n -= 127;
if (n > 127) {
y *= 0x1p127f;
n -= 127;
if (n > 127)
n = 127;
}
} else if (n < -126) {
y *= 0x1p-126f * 0x1p24f;
n += 126 - 24;
if (n < -126) {
y *= 0x1p-126f * 0x1p24f;
n += 126 - 24;
if (n < -126)
n = -126;
}
}
k += 25; /* subnormal result */
SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23));
return x*twom25;
u.i = (uint32_t)(0x7f+n)<<23;
x = y * u.f;
return x;
}
__strong_reference(scalbnf, ldexpf);

View file

@ -1,71 +1,49 @@
/* @(#)s_scalbn.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005-2020 Rich Felker, et al.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
* SPDX-License-Identifier: MIT
*
* Please see https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
* for all contributors to musl.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <math.h>
#include <float.h>
#include "math_private.h"
#include "fpmath.h"
/*
* scalbnl (long double x, int n)
* scalbnl(x,n) returns x* 2**n computed by exponent
* manipulation rather than by actually performing an
* exponentiation or a multiplication.
*/
/*
* We assume that a long double has a 15-bit exponent. On systems
* where long double is the same as double, scalbnl() is an alias
* for scalbn(), so we don't use this routine.
*/
#include <float.h>
#include <math.h>
#include "fpmath.h"
#if LDBL_MAX_EXP != 0x4000
#error "Unsupported long double format"
#endif
static const long double
huge = 0x1p16000L,
tiny = 0x1p-16000L;
long double
scalbnl (long double x, int n)
#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
long double scalbnl(long double x, int n)
{
union IEEEl2bits u;
int k;
u.e = x;
k = u.bits.exp; /* extract exponent */
if (k==0) { /* 0 or subnormal x */
if ((u.bits.manh|u.bits.manl)==0) return x; /* +-0 */
u.e *= 0x1p+128;
k = u.bits.exp - 128;
if (n< -50000) return tiny*x; /*underflow*/
}
if (k==0x7fff) return x+x; /* NaN or Inf */
k = k+n;
if (k >= 0x7fff) return huge*copysignl(huge,x); /* overflow */
if (k > 0) /* normal result */
{u.bits.exp = k; return u.e;}
if (k <= -128) {
if (n > 50000) /* in case integer overflow in n+k */
return huge*copysign(huge,x); /*overflow*/
else
return tiny*copysign(tiny,x); /*underflow*/
}
k += 128; /* subnormal result */
u.bits.exp = k;
return u.e*0x1p-128;
}
if (n > 16383) {
x *= 0x1p16383L;
n -= 16383;
if (n > 16383) {
x *= 0x1p16383L;
n -= 16383;
if (n > 16383)
n = 16383;
}
} else if (n < -16382) {
x *= 0x1p-16382L * 0x1p113L;
n += 16382 - 113;
if (n < -16382) {
x *= 0x1p-16382L * 0x1p113L;
n += 16382 - 113;
if (n < -16382)
n = -16382;
}
}
u.e = 1.0;
u.xbits.expsign = 0x3fff + n;
return x * u.e;
}
__strong_reference(scalbnl, ldexpl);
#endif

View file

@ -50,11 +50,10 @@ void
sincosl(long double x, long double *sn, long double *cs)
{
union IEEEl2bits z;
int e0, sgn;
int e0;
long double y[2];
z.e = x;
sgn = z.bits.sign;
z.bits.sign = 0;
ENTERV();

View file

@ -0,0 +1,169 @@
/*-
* Copyright (c) 2017 Steven G. Kargl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* sinpi(x) computes sin(pi*x) without multiplication by pi (almost). First,
* note that sinpi(-x) = -sinpi(x), so the algorithm considers only |x| and
* includes reflection symmetry by considering the sign of x on output. The
* method used depends on the magnitude of x.
*
* 1. For small |x|, sinpi(x) = pi * x where a sloppy threshold is used. The
* threshold is |x| < 0x1pN with N = -(P/2+M). P is the precision of the
* floating-point type and M = 2 to 4. To achieve high accuracy, pi is
* decomposed into high and low parts with the high part containing a
* number of trailing zero bits. x is also split into high and low parts.
*
* 2. For |x| < 1, argument reduction is not required and sinpi(x) is
* computed by calling a kernel that leverages the kernels for sin(x)
* ans cos(x). See k_sinpi.c and k_cospi.c for details.
*
* 3. For 1 <= |x| < 0x1p(P-1), argument reduction is required where
* |x| = j0 + r with j0 an integer and the remainder r satisfies
* 0 <= r < 1. With the given domain, a simplified inline floor(x)
* is used. Also, note the following identity
*
* sinpi(x) = sin(pi*(j0+r))
* = sin(pi*j0) * cos(pi*r) + cos(pi*j0) * sin(pi*r)
* = cos(pi*j0) * sin(pi*r)
* = +-sinpi(r)
*
* If j0 is even, then cos(pi*j0) = 1. If j0 is odd, then cos(pi*j0) = -1.
* sinpi(r) is then computed via an appropriate kernel.
*
* 4. For |x| >= 0x1p(P-1), |x| is integral and sinpi(x) = copysign(0,x).
*
* 5. Special cases:
*
* sinpi(+-0) = +-0
* sinpi(+-n) = +-0, for positive integers n.
* sinpi(+-inf) = nan. Raises the "invalid" floating-point exception.
* sinpi(nan) = nan. Raises the "invalid" floating-point exception.
*/
#include <float.h>
#include "math.h"
#include "math_private.h"
static const double
pi_hi = 3.1415926814079285e+00, /* 0x400921fb 0x58000000 */
pi_lo =-2.7818135228334233e-08; /* 0xbe5dde97 0x3dcb3b3a */
#include "k_cospi.h"
#include "k_sinpi.h"
volatile static const double vzero = 0;
double
sinpi(double x)
{
double ax, hi, lo, s;
uint32_t hx, ix, j0, lx;
EXTRACT_WORDS(hx, lx, x);
ix = hx & 0x7fffffff;
INSERT_WORDS(ax, ix, lx);
if (ix < 0x3ff00000) { /* |x| < 1 */
if (ix < 0x3fd00000) { /* |x| < 0.25 */
if (ix < 0x3e200000) { /* |x| < 0x1p-29 */
if (x == 0)
return (x);
/*
* To avoid issues with subnormal values,
* scale the computation and rescale on
* return.
*/
INSERT_WORDS(hi, hx, 0);
hi *= 0x1p53;
lo = x * 0x1p53 - hi;
s = (pi_lo + pi_hi) * lo + pi_lo * hi +
pi_hi * hi;
return (s * 0x1p-53);
}
s = __kernel_sinpi(ax);
return ((hx & 0x80000000) ? -s : s);
}
if (ix < 0x3fe00000) /* |x| < 0.5 */
s = __kernel_cospi(0.5 - ax);
else if (ix < 0x3fe80000) /* |x| < 0.75 */
s = __kernel_cospi(ax - 0.5);
else
s = __kernel_sinpi(1 - ax);
return ((hx & 0x80000000) ? -s : s);
}
if (ix < 0x43300000) { /* 1 <= |x| < 0x1p52 */
/* Determine integer part of ax. */
j0 = ((ix >> 20) & 0x7ff) - 0x3ff;
if (j0 < 20) {
ix &= ~(0x000fffff >> j0);
lx = 0;
} else {
lx &= ~((uint32_t)0xffffffff >> (j0 - 20));
}
INSERT_WORDS(x, ix, lx);
ax -= x;
EXTRACT_WORDS(ix, lx, ax);
if (ix == 0)
s = 0;
else {
if (ix < 0x3fe00000) { /* |x| < 0.5 */
if (ix < 0x3fd00000) /* |x| < 0.25 */
s = __kernel_sinpi(ax);
else
s = __kernel_cospi(0.5 - ax);
} else {
if (ix < 0x3fe80000) /* |x| < 0.75 */
s = __kernel_cospi(ax - 0.5);
else
s = __kernel_sinpi(1 - ax);
}
if (j0 > 30)
x -= 0x1p30;
j0 = (uint32_t)x;
if (j0 & 1) s = -s;
}
return ((hx & 0x80000000) ? -s : s);
}
if (ix >= 0x7f800000)
return (vzero / vzero);
/*
* |x| >= 0x1p52 is always an integer, so return +-0.
*/
return (copysign(0, x));
}
#if LDBL_MANT_DIG == 53
__weak_reference(sinpi, sinpil);
#endif