/* * Copyright (C) 2015 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "private/bionic_allocator.h" #include #include #include #include #include #include #include #include "private/bionic_page.h" // // BionicAllocator is a general purpose allocator designed to provide the same // functionality as the malloc/free/realloc libc functions. // // On alloc: // If size is >= 1k allocator proxies malloc call directly to mmap // If size < 1k allocator uses SmallObjectAllocator for the size // rounded up to the nearest power of two. // // On free: // // For a pointer allocated using proxy-to-mmap allocator unmaps // the memory. // // For a pointer allocated using SmallObjectAllocator it adds // the block to free_blocks_list in the corresponding page. If the number of // free pages reaches 2, SmallObjectAllocator munmaps one of the pages keeping // the other one in reserve. // Memory management for large objects is fairly straightforward, but for small // objects it is more complicated. If you are changing this code, one simple // way to evaluate the memory usage change is by running 'dd' and examine the // memory usage by 'showmap $(pidof dd)'. 'dd' is nice in that: // 1. It links in quite a few libraries, so you get some linker memory use. // 2. When run with no arguments, it sits waiting for input, so it is easy to // examine its memory usage with showmap. // 3. Since it does nothing while waiting for input, the memory usage is // determinisitic. static const char kSignature[4] = {'L', 'M', 'A', 1}; static const size_t kSmallObjectMaxSize = 1 << kSmallObjectMaxSizeLog2; // This type is used for large allocations (with size >1k) static const uint32_t kLargeObject = 111; // Allocated pointers must be at least 16-byte aligned. Round up the size of // page_info to multiple of 16. static constexpr size_t kPageInfoSize = __BIONIC_ALIGN(sizeof(page_info), 16); static inline uint16_t log2(size_t number) { uint16_t result = 0; number--; while (number != 0) { result++; number >>= 1; } return result; } BionicSmallObjectAllocator::BionicSmallObjectAllocator(uint32_t type, size_t block_size) : type_(type), block_size_(block_size), blocks_per_page_((PAGE_SIZE - sizeof(small_object_page_info)) / block_size), free_pages_cnt_(0), page_list_(nullptr) {} void* BionicSmallObjectAllocator::alloc() { CHECK(block_size_ != 0); if (page_list_ == nullptr) { alloc_page(); } // Fully allocated pages are de-managed and removed from the page list, so // every page from the page list must be useable. Let's just take the first // one. small_object_page_info* page = page_list_; CHECK(page->free_block_list != nullptr); small_object_block_record* const block_record = page->free_block_list; if (block_record->free_blocks_cnt > 1) { small_object_block_record* next_free = reinterpret_cast( reinterpret_cast(block_record) + block_size_); next_free->next = block_record->next; next_free->free_blocks_cnt = block_record->free_blocks_cnt - 1; page->free_block_list = next_free; } else { page->free_block_list = block_record->next; } if (page->free_blocks_cnt == blocks_per_page_) { free_pages_cnt_--; } page->free_blocks_cnt--; memset(block_record, 0, block_size_); if (page->free_blocks_cnt == 0) { // De-manage fully allocated pages. These pages will be managed again if // a block is freed. remove_from_page_list(page); } return block_record; } void BionicSmallObjectAllocator::free_page(small_object_page_info* page) { CHECK(page->free_blocks_cnt == blocks_per_page_); if (page->prev_page) { page->prev_page->next_page = page->next_page; } if (page->next_page) { page->next_page->prev_page = page->prev_page; } if (page_list_ == page) { page_list_ = page->next_page; } munmap(page, PAGE_SIZE); free_pages_cnt_--; } void BionicSmallObjectAllocator::free(void* ptr) { small_object_page_info* const page = reinterpret_cast( PAGE_START(reinterpret_cast(ptr))); if (reinterpret_cast(ptr) % block_size_ != 0) { async_safe_fatal("invalid pointer: %p (block_size=%zd)", ptr, block_size_); } memset(ptr, 0, block_size_); small_object_block_record* const block_record = reinterpret_cast(ptr); block_record->next = page->free_block_list; block_record->free_blocks_cnt = 1; page->free_block_list = block_record; page->free_blocks_cnt++; if (page->free_blocks_cnt == blocks_per_page_) { if (++free_pages_cnt_ > 1) { // if we already have a free page - unmap this one. free_page(page); } } else if (page->free_blocks_cnt == 1) { // We just freed from a full page. Add this page back to the list. add_to_page_list(page); } } void BionicSmallObjectAllocator::alloc_page() { void* const map_ptr = mmap(nullptr, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (map_ptr == MAP_FAILED) { async_safe_fatal("mmap failed: %s", strerror(errno)); } prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, PAGE_SIZE, "bionic_alloc_small_objects"); small_object_page_info* const page = reinterpret_cast(map_ptr); memcpy(page->info.signature, kSignature, sizeof(kSignature)); page->info.type = type_; page->info.allocator_addr = this; page->free_blocks_cnt = blocks_per_page_; // Align the first block to block_size_. const uintptr_t first_block_addr = __BIONIC_ALIGN(reinterpret_cast(page + 1), block_size_); small_object_block_record* const first_block = reinterpret_cast(first_block_addr); first_block->next = nullptr; first_block->free_blocks_cnt = blocks_per_page_; page->free_block_list = first_block; add_to_page_list(page); free_pages_cnt_++; } void BionicSmallObjectAllocator::add_to_page_list(small_object_page_info* page) { page->next_page = page_list_; page->prev_page = nullptr; if (page_list_) { page_list_->prev_page = page; } page_list_ = page; } void BionicSmallObjectAllocator::remove_from_page_list( small_object_page_info* page) { if (page->prev_page) { page->prev_page->next_page = page->next_page; } if (page->next_page) { page->next_page->prev_page = page->prev_page; } if (page_list_ == page) { page_list_ = page->next_page; } page->prev_page = nullptr; page->next_page = nullptr; } void BionicAllocator::initialize_allocators() { if (allocators_ != nullptr) { return; } BionicSmallObjectAllocator* allocators = reinterpret_cast(allocators_buf_); for (size_t i = 0; i < kSmallObjectAllocatorsCount; ++i) { uint32_t type = i + kSmallObjectMinSizeLog2; new (allocators + i) BionicSmallObjectAllocator(type, 1 << type); } allocators_ = allocators; } void* BionicAllocator::alloc_mmap(size_t size) { size_t allocated_size = PAGE_END(size + kPageInfoSize); void* map_ptr = mmap(nullptr, allocated_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (map_ptr == MAP_FAILED) { async_safe_fatal("mmap failed: %s", strerror(errno)); } prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, allocated_size, "bionic_alloc_lob"); page_info* info = reinterpret_cast(map_ptr); memcpy(info->signature, kSignature, sizeof(kSignature)); info->type = kLargeObject; info->allocated_size = allocated_size; return reinterpret_cast(reinterpret_cast(info) + kPageInfoSize); } void* BionicAllocator::alloc(size_t size) { // treat alloc(0) as alloc(1) if (size == 0) { size = 1; } if (size > kSmallObjectMaxSize) { return alloc_mmap(size); } uint16_t log2_size = log2(size); if (log2_size < kSmallObjectMinSizeLog2) { log2_size = kSmallObjectMinSizeLog2; } return get_small_object_allocator(log2_size)->alloc(); } page_info* BionicAllocator::get_page_info(void* ptr) { page_info* info = reinterpret_cast(PAGE_START(reinterpret_cast(ptr))); if (memcmp(info->signature, kSignature, sizeof(kSignature)) != 0) { async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr); } return info; } void* BionicAllocator::realloc(void* ptr, size_t size) { if (ptr == nullptr) { return alloc(size); } if (size == 0) { free(ptr); return nullptr; } page_info* info = get_page_info(ptr); size_t old_size = 0; if (info->type == kLargeObject) { old_size = info->allocated_size - kPageInfoSize; } else { BionicSmallObjectAllocator* allocator = get_small_object_allocator(info->type); if (allocator != info->allocator_addr) { async_safe_fatal("invalid pointer %p (page signature mismatch)", ptr); } old_size = allocator->get_block_size(); } if (old_size < size) { void *result = alloc(size); memcpy(result, ptr, old_size); free(ptr); return result; } return ptr; } void BionicAllocator::free(void* ptr) { if (ptr == nullptr) { return; } page_info* info = get_page_info(ptr); if (info->type == kLargeObject) { munmap(info, info->allocated_size); } else { BionicSmallObjectAllocator* allocator = get_small_object_allocator(info->type); if (allocator != info->allocator_addr) { async_safe_fatal("invalid pointer %p (invalid allocator address for the page)", ptr); } allocator->free(ptr); } } BionicSmallObjectAllocator* BionicAllocator::get_small_object_allocator(uint32_t type) { if (type < kSmallObjectMinSizeLog2 || type > kSmallObjectMaxSizeLog2) { async_safe_fatal("invalid type: %u", type); } initialize_allocators(); return &allocators_[type - kSmallObjectMinSizeLog2]; }