/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "SignalUtils.h" #include "utils.h" using namespace std::chrono_literals; TEST(time, time) { // Acquire time time_t p1, t1 = time(&p1); // valid? ASSERT_NE(static_cast(0), t1); ASSERT_NE(static_cast(-1), t1); ASSERT_EQ(p1, t1); // Acquire time one+ second later usleep(1010000); time_t p2, t2 = time(&p2); // valid? ASSERT_NE(static_cast(0), t2); ASSERT_NE(static_cast(-1), t2); ASSERT_EQ(p2, t2); // Expect time progression ASSERT_LT(p1, p2); ASSERT_LE(t2 - t1, static_cast(2)); // Expect nullptr call to produce same results ASSERT_LE(t2, time(nullptr)); ASSERT_LE(time(nullptr) - t2, static_cast(1)); } TEST(time, gmtime) { time_t t = 0; tm* broken_down = gmtime(&t); ASSERT_TRUE(broken_down != nullptr); ASSERT_EQ(0, broken_down->tm_sec); ASSERT_EQ(0, broken_down->tm_min); ASSERT_EQ(0, broken_down->tm_hour); ASSERT_EQ(1, broken_down->tm_mday); ASSERT_EQ(0, broken_down->tm_mon); ASSERT_EQ(1970, broken_down->tm_year + 1900); } TEST(time, gmtime_r) { struct tm tm = {}; time_t t = 0; struct tm* broken_down = gmtime_r(&t, &tm); ASSERT_EQ(broken_down, &tm); ASSERT_EQ(0, broken_down->tm_sec); ASSERT_EQ(0, broken_down->tm_min); ASSERT_EQ(0, broken_down->tm_hour); ASSERT_EQ(1, broken_down->tm_mday); ASSERT_EQ(0, broken_down->tm_mon); ASSERT_EQ(1970, broken_down->tm_year + 1900); } TEST(time, mktime_TZ_as_UTC_and_offset) { struct tm tm = {.tm_year = 70, .tm_mon = 0, .tm_mday = 1}; // This TZ value is not a valid Olson ID and is not present in tzdata file, // but is a valid TZ string according to POSIX standard. setenv("TZ", "UTC+08:00:00", 1); tzset(); ASSERT_EQ(static_cast(8 * 60 * 60), mktime(&tm)); } static void* gmtime_no_stack_overflow_14313703_fn(void*) { const char* original_tz = getenv("TZ"); // Ensure we'll actually have to enter tzload by using a timezone that doesn't exist. setenv("TZ", "gmtime_stack_overflow_14313703", 1); tzset(); if (original_tz != nullptr) { setenv("TZ", original_tz, 1); } tzset(); return nullptr; } TEST(time, gmtime_no_stack_overflow_14313703) { // Is it safe to call tzload on a thread with a small stack? // http://b/14313703 // https://code.google.com/p/android/issues/detail?id=61130 pthread_attr_t a; ASSERT_EQ(0, pthread_attr_init(&a)); ASSERT_EQ(0, pthread_attr_setstacksize(&a, PTHREAD_STACK_MIN)); pthread_t t; ASSERT_EQ(0, pthread_create(&t, &a, gmtime_no_stack_overflow_14313703_fn, nullptr)); ASSERT_EQ(0, pthread_join(t, nullptr)); } TEST(time, mktime_empty_TZ) { // tzcode used to have a bug where it didn't reinitialize some internal state. // Choose a time where DST is set. struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 1980 - 1900; t.tm_mon = 6; t.tm_mday = 2; setenv("TZ", "America/Los_Angeles", 1); tzset(); ASSERT_EQ(static_cast(331372800U), mktime(&t)); memset(&t, 0, sizeof(tm)); t.tm_year = 1980 - 1900; t.tm_mon = 6; t.tm_mday = 2; setenv("TZ", "", 1); // Implies UTC. tzset(); ASSERT_EQ(static_cast(331344000U), mktime(&t)); } TEST(time, mktime_10310929) { struct tm tm = {.tm_year = 2100 - 1900, .tm_mon = 2, .tm_mday = 10}; #if !defined(__LP64__) // 32-bit bionic has a signed 32-bit time_t. ASSERT_EQ(-1, mktime(&tm)); ASSERT_ERRNO(EOVERFLOW); #else // Everyone else should be using a signed 64-bit time_t. ASSERT_GE(sizeof(time_t) * 8, 64U); setenv("TZ", "America/Los_Angeles", 1); tzset(); errno = 0; // On the date/time specified by tm America/Los_Angeles // follows DST. But tm_isdst is set to 0, which forces // mktime to interpret that time as local standard, hence offset // is 8 hours, not 7. ASSERT_EQ(static_cast(4108348800U), mktime(&tm)); ASSERT_ERRNO(0); #endif } TEST(time, mktime_EOVERFLOW) { setenv("TZ", "UTC", 1); struct tm t; memset(&t, 0, sizeof(tm)); // LP32 year range is 1901-2038, so this year is guaranteed not to overflow. t.tm_year = 2016 - 1900; t.tm_mon = 2; t.tm_mday = 10; errno = 0; ASSERT_NE(static_cast(-1), mktime(&t)); ASSERT_ERRNO(0); // This will overflow for LP32. t.tm_year = INT_MAX; errno = 0; #if !defined(__LP64__) ASSERT_EQ(static_cast(-1), mktime(&t)); ASSERT_ERRNO(EOVERFLOW); #else ASSERT_EQ(static_cast(67768036166016000U), mktime(&t)); ASSERT_ERRNO(0); #endif // This will overflow for LP32 or LP64. // tm_year is int, this t struct points to INT_MAX + 1 no matter what TZ is. t.tm_year = INT_MAX; t.tm_mon = 11; t.tm_mday = 45; errno = 0; ASSERT_EQ(static_cast(-1), mktime(&t)); ASSERT_ERRNO(EOVERFLOW); } TEST(time, mktime_invalid_tm_TZ_combination) { setenv("TZ", "UTC", 1); struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 2022 - 1900; t.tm_mon = 11; t.tm_mday = 31; // UTC does not observe DST t.tm_isdst = 1; errno = 0; EXPECT_EQ(static_cast(-1), mktime(&t)); // mktime sets errno to EOVERFLOW if result is unrepresentable. EXPECT_ERRNO(EOVERFLOW); } // Transitions in the tzdata file are generated up to the year 2100. Testing // that dates beyond that are handled properly too. TEST(time, mktime_after_2100) { struct tm tm = {.tm_year = 2150 - 1900, .tm_mon = 2, .tm_mday = 10, .tm_isdst = -1}; #if !defined(__LP64__) // 32-bit bionic has a signed 32-bit time_t. ASSERT_EQ(-1, mktime(&tm)); ASSERT_ERRNO(EOVERFLOW); #else setenv("TZ", "Europe/London", 1); tzset(); errno = 0; ASSERT_EQ(static_cast(5686156800U), mktime(&tm)); ASSERT_ERRNO(0); #endif } TEST(time, strftime) { setenv("TZ", "UTC", 1); struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 200; t.tm_mon = 2; t.tm_mday = 10; char buf[64]; // Seconds since the epoch. #if defined(__BIONIC__) || defined(__LP64__) // Not 32-bit glibc. EXPECT_EQ(10U, strftime(buf, sizeof(buf), "%s", &t)); EXPECT_STREQ("4108320000", buf); #endif // Date and time as text. EXPECT_EQ(24U, strftime(buf, sizeof(buf), "%c", &t)); EXPECT_STREQ("Sun Mar 10 00:00:00 2100", buf); } TEST(time, strftime_second_before_epoch) { setenv("TZ", "UTC", 1); struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 1969 - 1900; t.tm_mon = 11; t.tm_mday = 31; t.tm_hour = 23; t.tm_min = 59; t.tm_sec = 59; char buf[64]; EXPECT_EQ(2U, strftime(buf, sizeof(buf), "%s", &t)); EXPECT_STREQ("-1", buf); } TEST(time, strftime_Z_null_tm_zone) { // Netflix on Nexus Player wouldn't start (http://b/25170306). struct tm t; memset(&t, 0, sizeof(tm)); char buf[64]; setenv("TZ", "America/Los_Angeles", 1); tzset(); t.tm_isdst = 0; // "0 if Daylight Savings Time is not in effect". EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("", buf); #if defined(__BIONIC__) // glibc 2.19 only copes with tm_isdst being 0 and 1. t.tm_isdst = 2; // "positive if Daylight Savings Time is in effect" EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("", buf); t.tm_isdst = -123; // "and negative if the information is not available". EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("<>", buf); #endif setenv("TZ", "UTC", 1); tzset(); t.tm_isdst = 0; EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("", buf); #if defined(__BIONIC__) // glibc 2.19 thinks UTC DST is "UTC". t.tm_isdst = 1; // UTC has no DST. EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t)); EXPECT_STREQ("<>", buf); #endif } // According to C language specification the only tm struct field needed to // find out replacement for %z and %Z in strftime is tm_isdst. Which is // wrong, as timezones change their standard offset and even DST savings. // tzcode deviates from C language specification and requires tm struct either // to be output of localtime-like functions or to be modified by mktime call // before passing to strftime. See tz mailing discussion for more details // https://mm.icann.org/pipermail/tz/2022-July/031674.html // But we are testing case when tm.tm_zone is null, which means that tm struct // is not coming from localtime and is neither modified by mktime. That's why // we are comparing against +0000, even though America/Los_Angeles never // observes it. TEST(time, strftime_z_null_tm_zone) { char str[64]; struct tm tm = {.tm_year = 109, .tm_mon = 4, .tm_mday = 2, .tm_isdst = 0}; setenv("TZ", "America/Los_Angeles", 1); tzset(); tm.tm_zone = NULL; size_t result = strftime(str, sizeof(str), "%z", &tm); EXPECT_EQ(5U, result); EXPECT_STREQ("+0000", str); tm.tm_isdst = 1; result = strftime(str, sizeof(str), "%z", &tm); EXPECT_EQ(5U, result); EXPECT_STREQ("+0000", str); setenv("TZ", "UTC", 1); tzset(); tm.tm_isdst = 0; result = strftime(str, sizeof(str), "%z", &tm); EXPECT_EQ(5U, result); EXPECT_STREQ("+0000", str); tm.tm_isdst = 1; result = strftime(str, sizeof(str), "%z", &tm); EXPECT_EQ(5U, result); EXPECT_STREQ("+0000", str); } TEST(time, strftime_z_Europe_Lisbon) { char str[64]; // During 1992-1996 Europe/Lisbon standard offset was 1 hour. // tm_isdst is not set as it will be overridden by mktime call anyway. struct tm tm = {.tm_year = 1996 - 1900, .tm_mon = 2, .tm_mday = 13}; setenv("TZ", "Europe/Lisbon", 1); tzset(); // tzcode's strftime implementation for %z relies on prior mktime call. // At the moment of writing %z value is taken from tm_gmtoff. So without // mktime call %z is replaced with +0000. // See https://mm.icann.org/pipermail/tz/2022-July/031674.html mktime(&tm); size_t result = strftime(str, sizeof(str), "%z", &tm); EXPECT_EQ(5U, result); EXPECT_STREQ("+0100", str); // Now standard offset is 0. tm = {.tm_year = 2022 - 1900, .tm_mon = 2, .tm_mday = 13}; mktime(&tm); result = strftime(str, sizeof(str), "%z", &tm); EXPECT_EQ(5U, result); EXPECT_STREQ("+0000", str); } TEST(time, strftime_l) { locale_t cloc = newlocale(LC_ALL, "C.UTF-8", nullptr); locale_t old_locale = uselocale(cloc); setenv("TZ", "UTC", 1); struct tm t; memset(&t, 0, sizeof(tm)); t.tm_year = 200; t.tm_mon = 2; t.tm_mday = 10; // Date and time as text. char buf[64]; EXPECT_EQ(24U, strftime_l(buf, sizeof(buf), "%c", &t, cloc)); EXPECT_STREQ("Sun Mar 10 00:00:00 2100", buf); uselocale(old_locale); freelocale(cloc); } TEST(time, strptime) { setenv("TZ", "UTC", 1); struct tm t; char buf[64]; memset(&t, 0, sizeof(t)); strptime("11:14", "%R", &t); strftime(buf, sizeof(buf), "%H:%M", &t); EXPECT_STREQ("11:14", buf); memset(&t, 0, sizeof(t)); strptime("09:41:53", "%T", &t); strftime(buf, sizeof(buf), "%H:%M:%S", &t); EXPECT_STREQ("09:41:53", buf); } TEST(time, strptime_l) { #if !defined(ANDROID_HOST_MUSL) setenv("TZ", "UTC", 1); struct tm t; char buf[64]; memset(&t, 0, sizeof(t)); strptime_l("11:14", "%R", &t, LC_GLOBAL_LOCALE); strftime_l(buf, sizeof(buf), "%H:%M", &t, LC_GLOBAL_LOCALE); EXPECT_STREQ("11:14", buf); memset(&t, 0, sizeof(t)); strptime_l("09:41:53", "%T", &t, LC_GLOBAL_LOCALE); strftime_l(buf, sizeof(buf), "%H:%M:%S", &t, LC_GLOBAL_LOCALE); EXPECT_STREQ("09:41:53", buf); #else GTEST_SKIP() << "musl doesn't support strptime_l"; #endif } TEST(time, strptime_F) { setenv("TZ", "UTC", 1); struct tm tm = {}; ASSERT_EQ('\0', *strptime("2019-03-26", "%F", &tm)); EXPECT_EQ(119, tm.tm_year); EXPECT_EQ(2, tm.tm_mon); EXPECT_EQ(26, tm.tm_mday); } TEST(time, strptime_P_p) { setenv("TZ", "UTC", 1); // For parsing, %P and %p are the same: case doesn't matter. struct tm tm = {.tm_hour = 12}; ASSERT_EQ('\0', *strptime("AM", "%p", &tm)); EXPECT_EQ(0, tm.tm_hour); tm = {.tm_hour = 12}; ASSERT_EQ('\0', *strptime("am", "%p", &tm)); EXPECT_EQ(0, tm.tm_hour); tm = {.tm_hour = 12}; ASSERT_EQ('\0', *strptime("AM", "%P", &tm)); EXPECT_EQ(0, tm.tm_hour); tm = {.tm_hour = 12}; ASSERT_EQ('\0', *strptime("am", "%P", &tm)); EXPECT_EQ(0, tm.tm_hour); } TEST(time, strptime_u) { setenv("TZ", "UTC", 1); struct tm tm = {}; ASSERT_EQ('\0', *strptime("2", "%u", &tm)); EXPECT_EQ(2, tm.tm_wday); } TEST(time, strptime_v) { setenv("TZ", "UTC", 1); struct tm tm = {}; ASSERT_EQ('\0', *strptime("26-Mar-1980", "%v", &tm)); EXPECT_EQ(80, tm.tm_year); EXPECT_EQ(2, tm.tm_mon); EXPECT_EQ(26, tm.tm_mday); } TEST(time, strptime_V_G_g) { setenv("TZ", "UTC", 1); // %V (ISO-8601 week number), %G (year of week number, without century), and // %g (year of week number) have no effect when parsed, and are supported // solely so that it's possible for strptime(3) to parse everything that // strftime(3) can output. struct tm tm = {}; ASSERT_EQ('\0', *strptime("1 2 3", "%V %G %g", &tm)); struct tm zero = {}; EXPECT_TRUE(memcmp(&tm, &zero, sizeof(tm)) == 0); } TEST(time, strptime_Z) { #if defined(__BIONIC__) // glibc doesn't handle %Z at all. // The BSDs only handle hard-coded "GMT" and "UTC", plus whatever two strings // are in the global `tzname` (which correspond to the current $TZ). struct tm tm; setenv("TZ", "Europe/Berlin", 1); // "GMT" always works. tm = {}; ASSERT_EQ('\0', *strptime("GMT", "%Z", &tm)); EXPECT_STREQ("GMT", tm.tm_zone); EXPECT_EQ(0, tm.tm_isdst); EXPECT_EQ(0, tm.tm_gmtoff); // As does "UTC". tm = {}; ASSERT_EQ('\0', *strptime("UTC", "%Z", &tm)); EXPECT_STREQ("UTC", tm.tm_zone); EXPECT_EQ(0, tm.tm_isdst); EXPECT_EQ(0, tm.tm_gmtoff); // Europe/Berlin is known as "CET" when there's no DST. tm = {}; ASSERT_EQ('\0', *strptime("CET", "%Z", &tm)); EXPECT_STREQ("CET", tm.tm_zone); EXPECT_EQ(0, tm.tm_isdst); EXPECT_EQ(3600, tm.tm_gmtoff); // Europe/Berlin is known as "CEST" when there's no DST. tm = {}; ASSERT_EQ('\0', *strptime("CEST", "%Z", &tm)); EXPECT_STREQ("CEST", tm.tm_zone); EXPECT_EQ(1, tm.tm_isdst); EXPECT_EQ(3600, tm.tm_gmtoff); // And as long as we're in Europe/Berlin, those are the only timezone // abbreviations that are recognized. tm = {}; ASSERT_TRUE(strptime("PDT", "%Z", &tm) == nullptr); #endif } TEST(time, strptime_z) { struct tm tm; setenv("TZ", "Europe/Berlin", 1); // "UT" is what RFC822 called UTC. tm = {}; ASSERT_EQ('\0', *strptime("UT", "%z", &tm)); EXPECT_STREQ("UTC", tm.tm_zone); EXPECT_EQ(0, tm.tm_isdst); EXPECT_EQ(0, tm.tm_gmtoff); // "GMT" is RFC822's other name for UTC. tm = {}; ASSERT_EQ('\0', *strptime("GMT", "%z", &tm)); EXPECT_STREQ("UTC", tm.tm_zone); EXPECT_EQ(0, tm.tm_isdst); EXPECT_EQ(0, tm.tm_gmtoff); // "Z" ("Zulu") is a synonym for UTC. tm = {}; ASSERT_EQ('\0', *strptime("Z", "%z", &tm)); EXPECT_STREQ("UTC", tm.tm_zone); EXPECT_EQ(0, tm.tm_isdst); EXPECT_EQ(0, tm.tm_gmtoff); // "PST"/"PDT" and the other common US zone abbreviations are all supported. tm = {}; ASSERT_EQ('\0', *strptime("PST", "%z", &tm)); EXPECT_STREQ("PST", tm.tm_zone); EXPECT_EQ(0, tm.tm_isdst); EXPECT_EQ(-28800, tm.tm_gmtoff); tm = {}; ASSERT_EQ('\0', *strptime("PDT", "%z", &tm)); EXPECT_STREQ("PDT", tm.tm_zone); EXPECT_EQ(1, tm.tm_isdst); EXPECT_EQ(-25200, tm.tm_gmtoff); // +-hh tm = {}; ASSERT_EQ('\0', *strptime("+01", "%z", &tm)); EXPECT_EQ(3600, tm.tm_gmtoff); EXPECT_TRUE(tm.tm_zone == nullptr); EXPECT_EQ(0, tm.tm_isdst); // +-hhmm tm = {}; ASSERT_EQ('\0', *strptime("+0130", "%z", &tm)); EXPECT_EQ(5400, tm.tm_gmtoff); EXPECT_TRUE(tm.tm_zone == nullptr); EXPECT_EQ(0, tm.tm_isdst); // +-hh:mm tm = {}; ASSERT_EQ('\0', *strptime("+01:30", "%z", &tm)); EXPECT_EQ(5400, tm.tm_gmtoff); EXPECT_TRUE(tm.tm_zone == nullptr); EXPECT_EQ(0, tm.tm_isdst); } void SetTime(timer_t t, time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) { itimerspec ts; ts.it_value.tv_sec = value_s; ts.it_value.tv_nsec = value_ns; ts.it_interval.tv_sec = interval_s; ts.it_interval.tv_nsec = interval_ns; ASSERT_EQ(0, timer_settime(t, 0, &ts, nullptr)); } static void NoOpNotifyFunction(sigval) { } TEST(time, timer_create) { sigevent se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = NoOpNotifyFunction; timer_t timer_id; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id)); pid_t pid = fork(); ASSERT_NE(-1, pid) << strerror(errno); if (pid == 0) { // Timers are not inherited by the child. ASSERT_EQ(-1, timer_delete(timer_id)); ASSERT_ERRNO(EINVAL); _exit(0); } AssertChildExited(pid, 0); ASSERT_EQ(0, timer_delete(timer_id)); } static int timer_create_SIGEV_SIGNAL_signal_handler_invocation_count; static void timer_create_SIGEV_SIGNAL_signal_handler(int signal_number) { ++timer_create_SIGEV_SIGNAL_signal_handler_invocation_count; ASSERT_EQ(SIGUSR1, signal_number); } TEST(time, timer_create_SIGEV_SIGNAL) { sigevent se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_SIGNAL; se.sigev_signo = SIGUSR1; timer_t timer_id; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id)); timer_create_SIGEV_SIGNAL_signal_handler_invocation_count = 0; ScopedSignalHandler ssh(SIGUSR1, timer_create_SIGEV_SIGNAL_signal_handler); ASSERT_EQ(0, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count); itimerspec ts; ts.it_value.tv_sec = 0; ts.it_value.tv_nsec = 1; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; ASSERT_EQ(0, timer_settime(timer_id, 0, &ts, nullptr)); usleep(500000); ASSERT_EQ(1, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count); } struct Counter { private: std::atomic value; timer_t timer_id; sigevent se; bool timer_valid; void Create() { ASSERT_FALSE(timer_valid); ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &timer_id)); timer_valid = true; } public: explicit Counter(void (*fn)(sigval)) : value(0), timer_valid(false) { memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = fn; se.sigev_value.sival_ptr = this; Create(); } void DeleteTimer() { ASSERT_TRUE(timer_valid); ASSERT_EQ(0, timer_delete(timer_id)); timer_valid = false; } ~Counter() { if (timer_valid) { DeleteTimer(); } } int Value() const { return value; } void SetTime(time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) { ::SetTime(timer_id, value_s, value_ns, interval_s, interval_ns); } bool ValueUpdated() { int current_value = value; time_t start = time(nullptr); while (current_value == value && (time(nullptr) - start) < 5) { } return current_value != value; } static void CountNotifyFunction(sigval value) { Counter* cd = reinterpret_cast(value.sival_ptr); ++cd->value; } static void CountAndDisarmNotifyFunction(sigval value) { Counter* cd = reinterpret_cast(value.sival_ptr); ++cd->value; // Setting the initial expiration time to 0 disarms the timer. cd->SetTime(0, 0, 1, 0); } }; TEST(time, timer_settime_0) { Counter counter(Counter::CountAndDisarmNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 500000000, 1, 0); sleep(1); // The count should just be 1 because we disarmed the timer the first time it fired. ASSERT_EQ(1, counter.Value()); } TEST(time, timer_settime_repeats) { Counter counter(Counter::CountNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 1, 0, 10); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); counter.DeleteTimer(); // Add a sleep as other threads may be calling the callback function when the timer is deleted. usleep(500000); } static int timer_create_NULL_signal_handler_invocation_count; static void timer_create_NULL_signal_handler(int signal_number) { ++timer_create_NULL_signal_handler_invocation_count; ASSERT_EQ(SIGALRM, signal_number); } TEST(time, timer_create_NULL) { // A NULL sigevent* is equivalent to asking for SIGEV_SIGNAL for SIGALRM. timer_t timer_id; ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, nullptr, &timer_id)); timer_create_NULL_signal_handler_invocation_count = 0; ScopedSignalHandler ssh(SIGALRM, timer_create_NULL_signal_handler); ASSERT_EQ(0, timer_create_NULL_signal_handler_invocation_count); SetTime(timer_id, 0, 1, 0, 0); usleep(500000); ASSERT_EQ(1, timer_create_NULL_signal_handler_invocation_count); } TEST(time, timer_create_EINVAL) { clockid_t invalid_clock = 16; // A SIGEV_SIGNAL timer is easy; the kernel does all that. timer_t timer_id; ASSERT_EQ(-1, timer_create(invalid_clock, nullptr, &timer_id)); ASSERT_ERRNO(EINVAL); // A SIGEV_THREAD timer is more interesting because we have stuff to clean up. sigevent se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = NoOpNotifyFunction; ASSERT_EQ(-1, timer_create(invalid_clock, &se, &timer_id)); ASSERT_ERRNO(EINVAL); } TEST(time, timer_create_multiple) { Counter counter1(Counter::CountNotifyFunction); Counter counter2(Counter::CountNotifyFunction); Counter counter3(Counter::CountNotifyFunction); ASSERT_EQ(0, counter1.Value()); ASSERT_EQ(0, counter2.Value()); ASSERT_EQ(0, counter3.Value()); counter2.SetTime(0, 500000000, 0, 0); sleep(1); EXPECT_EQ(0, counter1.Value()); EXPECT_EQ(1, counter2.Value()); EXPECT_EQ(0, counter3.Value()); } // Test to verify that disarming a repeatable timer disables the callbacks. TEST(time, timer_disarm_terminates) { Counter counter(Counter::CountNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 1, 0, 1); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); counter.SetTime(0, 0, 0, 0); // Add a sleep as the kernel may have pending events when the timer is disarmed. usleep(500000); int value = counter.Value(); usleep(500000); // Verify the counter has not been incremented. ASSERT_EQ(value, counter.Value()); } // Test to verify that deleting a repeatable timer disables the callbacks. TEST(time, timer_delete_terminates) { Counter counter(Counter::CountNotifyFunction); ASSERT_EQ(0, counter.Value()); counter.SetTime(0, 1, 0, 1); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); ASSERT_TRUE(counter.ValueUpdated()); counter.DeleteTimer(); // Add a sleep as other threads may be calling the callback function when the timer is deleted. usleep(500000); int value = counter.Value(); usleep(500000); // Verify the counter has not been incremented. ASSERT_EQ(value, counter.Value()); } struct TimerDeleteData { timer_t timer_id; pid_t tid; volatile bool complete; }; static void TimerDeleteCallback(sigval value) { TimerDeleteData* tdd = reinterpret_cast(value.sival_ptr); tdd->tid = gettid(); timer_delete(tdd->timer_id); tdd->complete = true; } TEST(time, timer_delete_from_timer_thread) { TimerDeleteData tdd; sigevent se; memset(&se, 0, sizeof(se)); se.sigev_notify = SIGEV_THREAD; se.sigev_notify_function = TimerDeleteCallback; se.sigev_value.sival_ptr = &tdd; tdd.complete = false; ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &tdd.timer_id)); itimerspec ts; ts.it_value.tv_sec = 1; ts.it_value.tv_nsec = 0; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; ASSERT_EQ(0, timer_settime(tdd.timer_id, 0, &ts, nullptr)); time_t cur_time = time(nullptr); while (!tdd.complete && (time(nullptr) - cur_time) < 5); ASSERT_TRUE(tdd.complete); #if defined(__BIONIC__) // Since bionic timers are implemented by creating a thread to handle the // callback, verify that the thread actually completes. cur_time = time(NULL); while ((kill(tdd.tid, 0) != -1 || errno != ESRCH) && (time(NULL) - cur_time) < 5); ASSERT_EQ(-1, kill(tdd.tid, 0)); ASSERT_ERRNO(ESRCH); #endif } // Musl doesn't define __NR_clock_gettime on 32-bit architectures. #if !defined(__NR_clock_gettime) #define __NR_clock_gettime __NR_clock_gettime32 #endif TEST(time, clock_gettime) { // Try to ensure that our vdso clock_gettime is working. timespec ts0; timespec ts1; timespec ts2; ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts0)); ASSERT_EQ(0, syscall(__NR_clock_gettime, CLOCK_MONOTONIC, &ts1)); ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts2)); // Check we have a nice monotonic timestamp sandwich. ASSERT_LE(ts0.tv_sec, ts1.tv_sec); if (ts0.tv_sec == ts1.tv_sec) { ASSERT_LE(ts0.tv_nsec, ts1.tv_nsec); } ASSERT_LE(ts1.tv_sec, ts2.tv_sec); if (ts1.tv_sec == ts2.tv_sec) { ASSERT_LE(ts1.tv_nsec, ts2.tv_nsec); } } TEST(time, clock_gettime_CLOCK_REALTIME) { timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts)); } TEST(time, clock_gettime_CLOCK_MONOTONIC) { timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts)); } TEST(time, clock_gettime_CLOCK_PROCESS_CPUTIME_ID) { timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts)); } TEST(time, clock_gettime_CLOCK_THREAD_CPUTIME_ID) { timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts)); } TEST(time, clock_gettime_CLOCK_BOOTTIME) { timespec ts; ASSERT_EQ(0, clock_gettime(CLOCK_BOOTTIME, &ts)); } TEST(time, clock_gettime_unknown) { errno = 0; timespec ts; ASSERT_EQ(-1, clock_gettime(-1, &ts)); ASSERT_ERRNO(EINVAL); } TEST(time, clock_getres_CLOCK_REALTIME) { timespec ts; ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, &ts)); ASSERT_EQ(1, ts.tv_nsec); ASSERT_EQ(0, ts.tv_sec); } TEST(time, clock_getres_CLOCK_MONOTONIC) { timespec ts; ASSERT_EQ(0, clock_getres(CLOCK_MONOTONIC, &ts)); ASSERT_EQ(1, ts.tv_nsec); ASSERT_EQ(0, ts.tv_sec); } TEST(time, clock_getres_CLOCK_PROCESS_CPUTIME_ID) { timespec ts; ASSERT_EQ(0, clock_getres(CLOCK_PROCESS_CPUTIME_ID, &ts)); } TEST(time, clock_getres_CLOCK_THREAD_CPUTIME_ID) { timespec ts; ASSERT_EQ(0, clock_getres(CLOCK_THREAD_CPUTIME_ID, &ts)); } TEST(time, clock_getres_CLOCK_BOOTTIME) { timespec ts; ASSERT_EQ(0, clock_getres(CLOCK_BOOTTIME, &ts)); ASSERT_EQ(1, ts.tv_nsec); ASSERT_EQ(0, ts.tv_sec); } TEST(time, clock_getres_unknown) { errno = 0; timespec ts = { -1, -1 }; ASSERT_EQ(-1, clock_getres(-1, &ts)); ASSERT_ERRNO(EINVAL); ASSERT_EQ(-1, ts.tv_nsec); ASSERT_EQ(-1, ts.tv_sec); } TEST(time, clock_getres_null_resolution) { ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, nullptr)); } TEST(time, clock) { // clock(3) is hard to test, but a 1s sleep should cost less than 10ms on average. static const clock_t N = 5; static const clock_t mean_limit_ms = 10; clock_t t0 = clock(); for (size_t i = 0; i < N; ++i) { sleep(1); } clock_t t1 = clock(); ASSERT_LT(t1 - t0, N * mean_limit_ms * (CLOCKS_PER_SEC / 1000)); } static pid_t GetInvalidPid() { std::unique_ptr fp{fopen("/proc/sys/kernel/pid_max", "r"), fclose}; long pid_max; fscanf(fp.get(), "%ld", &pid_max); return static_cast(pid_max + 1); } TEST(time, clock_getcpuclockid_current) { clockid_t clockid; ASSERT_EQ(0, clock_getcpuclockid(getpid(), &clockid)); timespec ts; ASSERT_EQ(0, clock_gettime(clockid, &ts)); } TEST(time, clock_getcpuclockid_parent) { clockid_t clockid; ASSERT_EQ(0, clock_getcpuclockid(getppid(), &clockid)); timespec ts; ASSERT_EQ(0, clock_gettime(clockid, &ts)); } TEST(time, clock_getcpuclockid_ESRCH) { // We can't use -1 for invalid pid here, because clock_getcpuclockid() can't detect it. errno = 0; // If this fails, your kernel needs commit e1b6b6ce to be backported. clockid_t clockid; ASSERT_EQ(ESRCH, clock_getcpuclockid(GetInvalidPid(), &clockid)) << "\n" << "Please ensure that the following kernel patches or their replacements have been applied:\n" << "* https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/" << "commit/?id=e1b6b6ce55a0a25c8aa8af019095253b2133a41a\n" << "* https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/" << "commit/?id=c80ed088a519da53f27b798a69748eaabc66aadf\n"; ASSERT_ERRNO(0); } TEST(time, clock_settime) { errno = 0; timespec ts; ASSERT_EQ(-1, clock_settime(-1, &ts)); ASSERT_ERRNO(EINVAL); } TEST(time, clock_nanosleep_EINVAL) { timespec in; timespec out; ASSERT_EQ(EINVAL, clock_nanosleep(-1, 0, &in, &out)); } TEST(time, clock_nanosleep_thread_cputime_id) { timespec in; in.tv_sec = 1; in.tv_nsec = 0; ASSERT_EQ(EINVAL, clock_nanosleep(CLOCK_THREAD_CPUTIME_ID, 0, &in, nullptr)); } TEST(time, clock_nanosleep) { auto t0 = std::chrono::steady_clock::now(); const timespec ts = {.tv_nsec = 5000000}; ASSERT_EQ(0, clock_nanosleep(CLOCK_MONOTONIC, 0, &ts, nullptr)); auto t1 = std::chrono::steady_clock::now(); ASSERT_GE(t1-t0, 5000000ns); } TEST(time, nanosleep) { auto t0 = std::chrono::steady_clock::now(); const timespec ts = {.tv_nsec = 5000000}; ASSERT_EQ(0, nanosleep(&ts, nullptr)); auto t1 = std::chrono::steady_clock::now(); ASSERT_GE(t1-t0, 5000000ns); } TEST(time, nanosleep_EINVAL) { timespec ts = {.tv_sec = -1}; errno = 0; ASSERT_EQ(-1, nanosleep(&ts, nullptr)); ASSERT_ERRNO(EINVAL); } TEST(time, bug_31938693) { // User-visible symptoms in N: // http://b/31938693 // https://code.google.com/p/android/issues/detail?id=225132 // Actual underlying bug (the code change, not the tzdata upgrade that first exposed the bug): // http://b/31848040 // This isn't a great test, because very few timezones were actually affected, and there's // no real logic to which ones were affected: it was just a coincidence of the data that came // after them in the tzdata file. time_t t = 1475619727; struct tm tm; setenv("TZ", "America/Los_Angeles", 1); tzset(); ASSERT_TRUE(localtime_r(&t, &tm) != nullptr); EXPECT_EQ(15, tm.tm_hour); setenv("TZ", "Europe/London", 1); tzset(); ASSERT_TRUE(localtime_r(&t, &tm) != nullptr); EXPECT_EQ(23, tm.tm_hour); setenv("TZ", "America/Atka", 1); tzset(); ASSERT_TRUE(localtime_r(&t, &tm) != nullptr); EXPECT_EQ(13, tm.tm_hour); setenv("TZ", "Pacific/Apia", 1); tzset(); ASSERT_TRUE(localtime_r(&t, &tm) != nullptr); EXPECT_EQ(12, tm.tm_hour); setenv("TZ", "Pacific/Honolulu", 1); tzset(); ASSERT_TRUE(localtime_r(&t, &tm) != nullptr); EXPECT_EQ(12, tm.tm_hour); setenv("TZ", "Asia/Magadan", 1); tzset(); ASSERT_TRUE(localtime_r(&t, &tm) != nullptr); EXPECT_EQ(9, tm.tm_hour); } TEST(time, bug_31339449) { // POSIX says localtime acts as if it calls tzset. // tzset does two things: // 1. it sets the timezone ctime/localtime/mktime/strftime will use. // 2. it sets the global `tzname`. // POSIX says localtime_r need not set `tzname` (2). // Q: should localtime_r set the timezone (1)? // Upstream tzcode (and glibc) answer "no", everyone else answers "yes". // Pick a time, any time... time_t t = 1475619727; // Call tzset with a specific timezone. setenv("TZ", "America/Atka", 1); tzset(); // If we change the timezone and call localtime, localtime should use the new timezone. setenv("TZ", "America/Los_Angeles", 1); struct tm* tm_p = localtime(&t); EXPECT_EQ(15, tm_p->tm_hour); // Reset the timezone back. setenv("TZ", "America/Atka", 1); tzset(); #if defined(__BIONIC__) // If we change the timezone again and call localtime_r, localtime_r should use the new timezone. setenv("TZ", "America/Los_Angeles", 1); struct tm tm = {}; localtime_r(&t, &tm); EXPECT_EQ(15, tm.tm_hour); #else // The BSDs agree with us, but glibc gets this wrong. #endif } TEST(time, asctime) { const struct tm tm = {}; ASSERT_STREQ("Sun Jan 0 00:00:00 1900\n", asctime(&tm)); } TEST(time, asctime_r) { const struct tm tm = {}; char buf[256]; ASSERT_EQ(buf, asctime_r(&tm, buf)); ASSERT_STREQ("Sun Jan 0 00:00:00 1900\n", buf); } TEST(time, ctime) { setenv("TZ", "UTC", 1); const time_t t = 0; ASSERT_STREQ("Thu Jan 1 00:00:00 1970\n", ctime(&t)); } TEST(time, ctime_r) { setenv("TZ", "UTC", 1); const time_t t = 0; char buf[256]; ASSERT_EQ(buf, ctime_r(&t, buf)); ASSERT_STREQ("Thu Jan 1 00:00:00 1970\n", buf); } // https://issuetracker.google.com/37128336 TEST(time, strftime_strptime_s) { char buf[32]; const struct tm tm0 = { .tm_year = 1982-1900, .tm_mon = 0, .tm_mday = 1 }; setenv("TZ", "America/Los_Angeles", 1); strftime(buf, sizeof(buf), "<%s>", &tm0); EXPECT_STREQ("<378720000>", buf); setenv("TZ", "UTC", 1); strftime(buf, sizeof(buf), "<%s>", &tm0); EXPECT_STREQ("<378691200>", buf); struct tm tm; setenv("TZ", "America/Los_Angeles", 1); tzset(); memset(&tm, 0xff, sizeof(tm)); char* p = strptime("378720000x", "%s", &tm); ASSERT_EQ('x', *p); EXPECT_EQ(0, tm.tm_sec); EXPECT_EQ(0, tm.tm_min); EXPECT_EQ(0, tm.tm_hour); EXPECT_EQ(1, tm.tm_mday); EXPECT_EQ(0, tm.tm_mon); EXPECT_EQ(82, tm.tm_year); EXPECT_EQ(5, tm.tm_wday); EXPECT_EQ(0, tm.tm_yday); EXPECT_EQ(0, tm.tm_isdst); setenv("TZ", "UTC", 1); tzset(); memset(&tm, 0xff, sizeof(tm)); p = strptime("378691200x", "%s", &tm); ASSERT_EQ('x', *p); EXPECT_EQ(0, tm.tm_sec); EXPECT_EQ(0, tm.tm_min); EXPECT_EQ(0, tm.tm_hour); EXPECT_EQ(1, tm.tm_mday); EXPECT_EQ(0, tm.tm_mon); EXPECT_EQ(82, tm.tm_year); EXPECT_EQ(5, tm.tm_wday); EXPECT_EQ(0, tm.tm_yday); EXPECT_EQ(0, tm.tm_isdst); } TEST(time, strptime_s_nothing) { struct tm tm; ASSERT_EQ(nullptr, strptime("x", "%s", &tm)); } TEST(time, timespec_get) { #if defined(__BIONIC__) timespec ts = {}; ASSERT_EQ(TIME_UTC, timespec_get(&ts, TIME_UTC)); ASSERT_EQ(TIME_MONOTONIC, timespec_get(&ts, TIME_MONOTONIC)); ASSERT_EQ(TIME_ACTIVE, timespec_get(&ts, TIME_ACTIVE)); ASSERT_EQ(TIME_THREAD_ACTIVE, timespec_get(&ts, TIME_THREAD_ACTIVE)); #else GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21"; #endif } TEST(time, timespec_get_invalid) { #if defined(__BIONIC__) timespec ts = {}; ASSERT_EQ(0, timespec_get(&ts, 123)); #else GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21"; #endif } TEST(time, timespec_getres) { #if defined(__BIONIC__) timespec ts = {}; ASSERT_EQ(TIME_UTC, timespec_getres(&ts, TIME_UTC)); ASSERT_EQ(1, ts.tv_nsec); ASSERT_EQ(0, ts.tv_sec); #else GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21"; #endif } TEST(time, timespec_getres_invalid) { #if defined(__BIONIC__) timespec ts = {}; ASSERT_EQ(0, timespec_getres(&ts, 123)); #else GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21"; #endif } TEST(time, difftime) { ASSERT_EQ(1.0, difftime(1, 0)); ASSERT_EQ(-1.0, difftime(0, 1)); } TEST(time, tzfree_null) { #if defined(__BIONIC__) tzfree(nullptr); #else GTEST_SKIP() << "glibc doesn't have timezone_t"; #endif } TEST(time, localtime_rz) { #if defined(__BIONIC__) setenv("TZ", "America/Los_Angeles", 1); tzset(); auto AssertTmEq = [](const struct tm& rhs, int hour) { ASSERT_EQ(93, rhs.tm_year); ASSERT_EQ(0, rhs.tm_mon); ASSERT_EQ(1, rhs.tm_mday); ASSERT_EQ(hour, rhs.tm_hour); ASSERT_EQ(0, rhs.tm_min); ASSERT_EQ(0, rhs.tm_sec); }; const time_t t = 725875200; // Spam localtime_r() while we use localtime_rz(). std::atomic done = false; std::thread thread{[&] { while (!done) { struct tm tm {}; ASSERT_EQ(&tm, localtime_r(&t, &tm)); AssertTmEq(tm, 0); } }}; struct tm tm; timezone_t london{tzalloc("Europe/London")}; tm = {}; ASSERT_EQ(&tm, localtime_rz(london, &t, &tm)); AssertTmEq(tm, 8); timezone_t seoul{tzalloc("Asia/Seoul")}; tm = {}; ASSERT_EQ(&tm, localtime_rz(seoul, &t, &tm)); AssertTmEq(tm, 17); // Just check that mktime()'s timezone didn't change. tm = {}; ASSERT_EQ(&tm, localtime_r(&t, &tm)); ASSERT_EQ(0, tm.tm_hour); AssertTmEq(tm, 0); done = true; thread.join(); tzfree(london); tzfree(seoul); #else GTEST_SKIP() << "glibc doesn't have timezone_t"; #endif } TEST(time, mktime_z) { #if defined(__BIONIC__) setenv("TZ", "America/Los_Angeles", 1); tzset(); // Spam mktime() while we use mktime_z(). std::atomic done = false; std::thread thread{[&done] { while (!done) { struct tm tm { .tm_year = 93, .tm_mday = 1 }; ASSERT_EQ(725875200, mktime(&tm)); } }}; struct tm tm; timezone_t london{tzalloc("Europe/London")}; tm = {.tm_year = 93, .tm_mday = 1}; ASSERT_EQ(725846400, mktime_z(london, &tm)); timezone_t seoul{tzalloc("Asia/Seoul")}; tm = {.tm_year = 93, .tm_mday = 1}; ASSERT_EQ(725814000, mktime_z(seoul, &tm)); // Just check that mktime()'s timezone didn't change. tm = {.tm_year = 93, .tm_mday = 1}; ASSERT_EQ(725875200, mktime(&tm)); done = true; thread.join(); tzfree(london); tzfree(seoul); #else GTEST_SKIP() << "glibc doesn't have timezone_t"; #endif } TEST(time, tzalloc_nullptr) { #if defined(__BIONIC__) // tzalloc(nullptr) returns the system timezone. timezone_t default_tz = tzalloc(nullptr); ASSERT_NE(nullptr, default_tz); // Check that mktime_z() with the default timezone matches mktime(). // This assumes that the system timezone doesn't change during the test, // but that should be unlikely, and we don't have much choice if we // want to write a test at all. // We unset $TZ before calling mktime() because mktime() honors $TZ. unsetenv("TZ"); struct tm tm = {.tm_year = 93, .tm_mday = 1}; time_t t = mktime(&tm); ASSERT_EQ(t, mktime_z(default_tz, &tm)); // Check that changing $TZ doesn't affect the tzalloc() default in // the same way it would the mktime() default. setenv("TZ", "America/Los_Angeles", 1); tzset(); ASSERT_EQ(t, mktime_z(default_tz, &tm)); setenv("TZ", "Europe/London", 1); tzset(); ASSERT_EQ(t, mktime_z(default_tz, &tm)); setenv("TZ", "Asia/Seoul", 1); tzset(); ASSERT_EQ(t, mktime_z(default_tz, &tm)); tzfree(default_tz); #else GTEST_SKIP() << "glibc doesn't have timezone_t"; #endif } TEST(time, tzalloc_unique_ptr) { #if defined(__BIONIC__) std::unique_ptr, decltype(&tzfree)> tz{tzalloc("Asia/Seoul"), tzfree}; #else GTEST_SKIP() << "glibc doesn't have timezone_t"; #endif }