/* * Copyright (C) 2024 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define STATIC_TLS_LAYOUT_TEST #include "private/bionic_elf_tls.h" #include #include #include #include "private/bionic_tls.h" using namespace std::string_literals; struct AlignedSizeFlat { size_t size = 0; size_t align = 1; size_t skew = 0; }; static TlsAlignedSize unflatten_size(AlignedSizeFlat flat) { return TlsAlignedSize{.size = flat.size, .align = TlsAlign{ .value = flat.align, .skew = flat.skew, }}; } TEST(static_tls_layout, reserve_tp_pair) { auto reserve_tp = [](const AlignedSizeFlat& before, const AlignedSizeFlat& after, StaticTlsLayout layout = {}) { auto allocs = layout.reserve_tp_pair(unflatten_size(before), unflatten_size(after)); return std::make_tuple(layout, allocs); }; StaticTlsLayout layout; StaticTlsLayout::TpAllocations allocs; // Simple case. std::tie(layout, allocs) = reserve_tp({.size = 8, .align = 2}, {.size = 16, .align = 2}); EXPECT_EQ(0u, allocs.before); EXPECT_EQ(8u, allocs.tp); EXPECT_EQ(8u, allocs.after); EXPECT_EQ(24u, layout.size()); EXPECT_EQ(2u, layout.align_); // Zero-sized `before` std::tie(layout, allocs) = reserve_tp({.size = 0}, {.size = 64, .align = 8}); EXPECT_EQ(0u, allocs.before); EXPECT_EQ(0u, allocs.tp); EXPECT_EQ(0u, allocs.after); // Zero-sized `after` std::tie(layout, allocs) = reserve_tp({.size = 64, .align = 8}, {.size = 0}); EXPECT_EQ(0u, allocs.before); EXPECT_EQ(64u, allocs.tp); EXPECT_EQ(64u, allocs.after); // The `before` allocation is shifted forward to the TP. std::tie(layout, allocs) = reserve_tp({.size = 1}, {.size = 64, .align = 8}); EXPECT_EQ(7u, allocs.before); EXPECT_EQ(8u, allocs.tp); EXPECT_EQ(8u, allocs.after); // Alignment gap between `before` and TP. std::tie(layout, allocs) = reserve_tp({.size = 9, .align = 4}, {.size = 1}); EXPECT_EQ(0u, allocs.before); EXPECT_EQ(12u, allocs.tp); EXPECT_EQ(12u, allocs.after); EXPECT_EQ(13u, layout.size()); EXPECT_EQ(4u, layout.align_); // Alignment gap between `before` and TP. std::tie(layout, allocs) = reserve_tp({.size = 9, .align = 4}, {.size = 128, .align = 64}); EXPECT_EQ(52u, allocs.before); EXPECT_EQ(64u, allocs.tp); EXPECT_EQ(64u, allocs.after); EXPECT_EQ(192u, layout.size()); EXPECT_EQ(64u, layout.align_); // Skew-aligned `before` with low alignment. std::tie(layout, allocs) = reserve_tp({.size = 1, .align = 4, .skew = 1}, {.size = 64, .align = 8}); EXPECT_EQ(5u, allocs.before); EXPECT_EQ(8u, allocs.tp); // Skew-aligned `before` with high alignment. std::tie(layout, allocs) = reserve_tp({.size = 48, .align = 64, .skew = 17}, {.size = 1}); EXPECT_EQ(17u, allocs.before); EXPECT_EQ(128u, allocs.tp); // An unrelated byte precedes the pair in the layout. Make sure `before` is // still aligned. layout = {}; layout.reserve_type(); std::tie(layout, allocs) = reserve_tp({.size = 12, .align = 16}, {.size = 1}, layout); EXPECT_EQ(16u, allocs.before); EXPECT_EQ(32u, allocs.tp); // Skew-aligned `after`. std::tie(layout, allocs) = reserve_tp({.size = 32, .align = 8}, {.size = 16, .align = 4, .skew = 3}); EXPECT_EQ(0u, allocs.before); EXPECT_EQ(32u, allocs.tp); EXPECT_EQ(35u, allocs.after); EXPECT_EQ(51u, layout.size()); } // A "NUM_words" literal is the size in bytes of NUM words of memory. static size_t operator""_words(unsigned long long i) { return i * sizeof(void*); } TEST(static_tls_layout, arm) { #if !defined(__arm__) && !defined(__aarch64__) GTEST_SKIP() << "test only applies to arm32/arm64 targets"; #endif auto reserve_exe = [](const AlignedSizeFlat& config) { StaticTlsLayout layout; TlsSegment seg = {.aligned_size = unflatten_size(config)}; layout.reserve_exe_segment_and_tcb(&seg, "prog"); return layout; }; auto underalign_error = [](size_t align, size_t offset) { return R"(error: "prog": executable's TLS segment is underaligned: )"s R"(alignment is )"s + std::to_string(align) + R"( \(skew )" + std::to_string(offset) + R"(\), needs to be at least (32 for ARM|64 for ARM64) Bionic)"s; }; // Amount of memory needed for negative TLS slots, given a segment p_align of // 8 or 16 words. const size_t base8 = __BIONIC_ALIGN(-MIN_TLS_SLOT, 8) * sizeof(void*); const size_t base16 = __BIONIC_ALIGN(-MIN_TLS_SLOT, 16) * sizeof(void*); StaticTlsLayout layout; // An executable with a single word. layout = reserve_exe({.size = 1_words, .align = 8_words}); EXPECT_EQ(base8 + MIN_TLS_SLOT * sizeof(void*), layout.offset_bionic_tcb()); EXPECT_EQ(base8, layout.offset_thread_pointer()); EXPECT_EQ(base8 + 8_words, layout.offset_exe()); EXPECT_EQ(base8 + 9_words, layout.size()); EXPECT_EQ(8_words, layout.align_); // Simple underalignment case. EXPECT_DEATH(reserve_exe({.size = 1_words, .align = 1_words}), underalign_error(1_words, 0)); // Skewed by 1 word is OK. layout = reserve_exe({.size = 1_words, .align = 8_words, .skew = 1_words}); EXPECT_EQ(base8, layout.offset_thread_pointer()); EXPECT_EQ(base8 + 9_words, layout.offset_exe()); EXPECT_EQ(base8 + 10_words, layout.size()); EXPECT_EQ(8_words, layout.align_); // Skewed by 2 words would overlap Bionic slots, regardless of the p_align // value. EXPECT_DEATH(reserve_exe({.size = 1_words, .align = 8_words, .skew = 2_words}), underalign_error(8_words, 2_words)); EXPECT_DEATH(reserve_exe({.size = 1_words, .align = 0x1000, .skew = 2_words}), underalign_error(0x1000, 2_words)); // Skewed by 8 words is OK again. layout = reserve_exe({.size = 1_words, .align = 16_words, .skew = 8_words}); EXPECT_EQ(base16, layout.offset_thread_pointer()); EXPECT_EQ(base16 + 8_words, layout.offset_exe()); EXPECT_EQ(base16 + 9_words, layout.size()); EXPECT_EQ(16_words, layout.align_); // Skewed by 9 words is also OK. (The amount of skew doesn't need to be a // multiple of anything.) layout = reserve_exe({.size = 1_words, .align = 16_words, .skew = 9_words}); EXPECT_EQ(base16, layout.offset_thread_pointer()); EXPECT_EQ(base16 + 9_words, layout.offset_exe()); EXPECT_EQ(base16 + 10_words, layout.size()); EXPECT_EQ(16_words, layout.align_); // Skew with large alignment. layout = reserve_exe({.size = 1_words, .align = 256_words, .skew = 8_words}); EXPECT_EQ(256_words, layout.offset_thread_pointer()); EXPECT_EQ(264_words, layout.offset_exe()); EXPECT_EQ(265_words, layout.size()); EXPECT_EQ(256_words, layout.align_); }