/* * Copyright (C) 2019 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "private/bionic_elf_tls.h" #include #include #include #include #include #include "private/ScopedRWLock.h" #include "private/ScopedSignalBlocker.h" #include "private/bionic_globals.h" #include "platform/bionic/macros.h" #include "private/bionic_tls.h" #include "pthread_internal.h" // Every call to __tls_get_addr needs to check the generation counter, so // accesses to the counter need to be as fast as possible. Keep a copy of it in // a hidden variable, which can be accessed without using the GOT. The linker // will update this variable when it updates its counter. // // To allow the linker to update this variable, libc.so's constructor passes its // address to the linker. To accommodate a possible __tls_get_addr call before // libc.so's constructor, this local copy is initialized to SIZE_MAX, forcing // __tls_get_addr to initially use the slow path. __LIBC_HIDDEN__ _Atomic(size_t) __libc_tls_generation_copy = SIZE_MAX; // Search for a TLS segment in the given phdr table. Returns true if it has a // TLS segment and false otherwise. bool __bionic_get_tls_segment(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias, TlsSegment* out) { for (size_t i = 0; i < phdr_count; ++i) { const ElfW(Phdr)& phdr = phdr_table[i]; if (phdr.p_type == PT_TLS) { *out = TlsSegment { phdr.p_memsz, phdr.p_align, reinterpret_cast(load_bias + phdr.p_vaddr), phdr.p_filesz, }; return true; } } return false; } // Return true if the alignment of a TLS segment is a valid power-of-two. Also // cap the alignment if it's too high. bool __bionic_check_tls_alignment(size_t* alignment) { // N.B. The size does not need to be a multiple of the alignment. With // ld.bfd (or after using binutils' strip), the TLS segment's size isn't // rounded up. if (*alignment == 0 || !powerof2(*alignment)) { return false; } // Bionic only respects TLS alignment up to one page. *alignment = MIN(*alignment, PAGE_SIZE); return true; } size_t StaticTlsLayout::offset_thread_pointer() const { return offset_bionic_tcb_ + (-MIN_TLS_SLOT * sizeof(void*)); } // Reserves space for the Bionic TCB and the executable's TLS segment. Returns // the offset of the executable's TLS segment. size_t StaticTlsLayout::reserve_exe_segment_and_tcb(const TlsSegment* exe_segment, const char* progname __attribute__((unused))) { // Special case: if the executable has no TLS segment, then just allocate a // TCB and skip the minimum alignment check on ARM. if (exe_segment == nullptr) { offset_bionic_tcb_ = reserve_type(); return 0; } #if defined(__arm__) || defined(__aarch64__) // First reserve enough space for the TCB before the executable segment. reserve(sizeof(bionic_tcb), 1); // Then reserve the segment itself. const size_t result = reserve(exe_segment->size, exe_segment->alignment); // The variant 1 ABI that ARM linkers follow specifies a 2-word TCB between // the thread pointer and the start of the executable's TLS segment, but both // the thread pointer and the TLS segment are aligned appropriately for the // TLS segment. Calculate the distance between the thread pointer and the // EXE's segment. const size_t exe_tpoff = __BIONIC_ALIGN(sizeof(void*) * 2, exe_segment->alignment); const size_t min_bionic_alignment = BIONIC_ROUND_UP_POWER_OF_2(MAX_TLS_SLOT) * sizeof(void*); if (exe_tpoff < min_bionic_alignment) { async_safe_fatal("error: \"%s\": executable's TLS segment is underaligned: " "alignment is %zu, needs to be at least %zu for %s Bionic", progname, exe_segment->alignment, min_bionic_alignment, (sizeof(void*) == 4 ? "ARM" : "ARM64")); } offset_bionic_tcb_ = result - exe_tpoff - (-MIN_TLS_SLOT * sizeof(void*)); return result; #elif defined(__i386__) || defined(__x86_64__) // x86 uses variant 2 TLS layout. The executable's segment is located just // before the TCB. static_assert(MIN_TLS_SLOT == 0, "First slot of bionic_tcb must be slot #0 on x86"); const size_t exe_size = round_up_with_overflow_check(exe_segment->size, exe_segment->alignment); reserve(exe_size, 1); const size_t max_align = MAX(alignof(bionic_tcb), exe_segment->alignment); offset_bionic_tcb_ = reserve(sizeof(bionic_tcb), max_align); return offset_bionic_tcb_ - exe_size; #else #error "Unrecognized architecture" #endif } void StaticTlsLayout::reserve_bionic_tls() { offset_bionic_tls_ = reserve_type(); } void StaticTlsLayout::finish_layout() { // Round the offset up to the alignment. offset_ = round_up_with_overflow_check(offset_, alignment_); if (overflowed_) { async_safe_fatal("error: TLS segments in static TLS overflowed"); } } // The size is not required to be a multiple of the alignment. The alignment // must be a positive power-of-two. size_t StaticTlsLayout::reserve(size_t size, size_t alignment) { offset_ = round_up_with_overflow_check(offset_, alignment); const size_t result = offset_; if (__builtin_add_overflow(offset_, size, &offset_)) overflowed_ = true; alignment_ = MAX(alignment_, alignment); return result; } size_t StaticTlsLayout::round_up_with_overflow_check(size_t value, size_t alignment) { const size_t old_value = value; value = __BIONIC_ALIGN(value, alignment); if (value < old_value) overflowed_ = true; return value; } // Copy each TLS module's initialization image into a newly-allocated block of // static TLS memory. To reduce dirty pages, this function only writes to pages // within the static TLS that need initialization. The memory should already be // zero-initialized on entry. void __init_static_tls(void* static_tls) { // The part of the table we care about (i.e. static TLS modules) never changes // after startup, but we still need the mutex because the table could grow, // moving the initial part. If this locking is too slow, we can duplicate the // static part of the table. TlsModules& modules = __libc_shared_globals()->tls_modules; ScopedSignalBlocker ssb; ScopedReadLock locker(&modules.rwlock); for (size_t i = 0; i < modules.module_count; ++i) { TlsModule& module = modules.module_table[i]; if (module.static_offset == SIZE_MAX) { // All of the static modules come before all of the dynamic modules, so // once we see the first dynamic module, we're done. break; } if (module.segment.init_size == 0) { // Skip the memcpy call for TLS segments with no initializer, which is // common. continue; } memcpy(static_cast(static_tls) + module.static_offset, module.segment.init_ptr, module.segment.init_size); } } static inline size_t dtv_size_in_bytes(size_t module_count) { return sizeof(TlsDtv) + module_count * sizeof(void*); } // Calculates the number of module slots to allocate in a new DTV. For small // objects (up to 1KiB), the TLS allocator allocates memory in power-of-2 sizes, // so for better space usage, ensure that the DTV size (header + slots) is a // power of 2. // // The lock on TlsModules must be held. static size_t calculate_new_dtv_count() { size_t loaded_cnt = __libc_shared_globals()->tls_modules.module_count; size_t bytes = dtv_size_in_bytes(MAX(1, loaded_cnt)); if (!powerof2(bytes)) { bytes = BIONIC_ROUND_UP_POWER_OF_2(bytes); } return (bytes - sizeof(TlsDtv)) / sizeof(void*); } // This function must be called with signals blocked and a write lock on // TlsModules held. static void update_tls_dtv(bionic_tcb* tcb) { const TlsModules& modules = __libc_shared_globals()->tls_modules; BionicAllocator& allocator = __libc_shared_globals()->tls_allocator; // Use the generation counter from the shared globals instead of the local // copy, which won't be initialized yet if __tls_get_addr is called before // libc.so's constructor. if (__get_tcb_dtv(tcb)->generation == atomic_load(&modules.generation)) { return; } const size_t old_cnt = __get_tcb_dtv(tcb)->count; // If the DTV isn't large enough, allocate a larger one. Because a signal // handler could interrupt the fast path of __tls_get_addr, we don't free the // old DTV. Instead, we add the old DTV to a list, then free all of a thread's // DTVs at thread-exit. Each time the DTV is reallocated, its size at least // doubles. if (modules.module_count > old_cnt) { size_t new_cnt = calculate_new_dtv_count(); TlsDtv* const old_dtv = __get_tcb_dtv(tcb); TlsDtv* const new_dtv = static_cast(allocator.alloc(dtv_size_in_bytes(new_cnt))); memcpy(new_dtv, old_dtv, dtv_size_in_bytes(old_cnt)); new_dtv->count = new_cnt; new_dtv->next = old_dtv; __set_tcb_dtv(tcb, new_dtv); } TlsDtv* const dtv = __get_tcb_dtv(tcb); const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout; char* static_tls = reinterpret_cast(tcb) - layout.offset_bionic_tcb(); // Initialize static TLS modules and free unloaded modules. for (size_t i = 0; i < dtv->count; ++i) { if (i < modules.module_count) { const TlsModule& mod = modules.module_table[i]; if (mod.static_offset != SIZE_MAX) { dtv->modules[i] = static_tls + mod.static_offset; continue; } if (mod.first_generation != kTlsGenerationNone && mod.first_generation <= dtv->generation) { continue; } } if (modules.on_destruction_cb != nullptr) { void* dtls_begin = dtv->modules[i]; void* dtls_end = static_cast(static_cast(dtls_begin) + allocator.get_chunk_size(dtls_begin)); modules.on_destruction_cb(dtls_begin, dtls_end); } allocator.free(dtv->modules[i]); dtv->modules[i] = nullptr; } dtv->generation = atomic_load(&modules.generation); } __attribute__((noinline)) static void* tls_get_addr_slow_path(const TlsIndex* ti) { TlsModules& modules = __libc_shared_globals()->tls_modules; bionic_tcb* tcb = __get_bionic_tcb(); // Block signals and lock TlsModules. We may need the allocator, so take // a write lock. ScopedSignalBlocker ssb; ScopedWriteLock locker(&modules.rwlock); update_tls_dtv(tcb); TlsDtv* dtv = __get_tcb_dtv(tcb); const size_t module_idx = __tls_module_id_to_idx(ti->module_id); void* mod_ptr = dtv->modules[module_idx]; if (mod_ptr == nullptr) { const TlsSegment& segment = modules.module_table[module_idx].segment; mod_ptr = __libc_shared_globals()->tls_allocator.memalign(segment.alignment, segment.size); if (segment.init_size > 0) { memcpy(mod_ptr, segment.init_ptr, segment.init_size); } dtv->modules[module_idx] = mod_ptr; // Reports the allocation to the listener, if any. if (modules.on_creation_cb != nullptr) { modules.on_creation_cb(mod_ptr, static_cast(static_cast(mod_ptr) + segment.size)); } } return static_cast(mod_ptr) + ti->offset; } // Returns the address of a thread's TLS memory given a module ID and an offset // into that module's TLS segment. This function is called on every access to a // dynamic TLS variable on targets that don't use TLSDESC. arm64 uses TLSDESC, // so it only calls this function on a thread's first access to a module's TLS // segment. // // On most targets, this accessor function is __tls_get_addr and // TLS_GET_ADDR_CCONV is unset. 32-bit x86 uses ___tls_get_addr instead and a // regparm() calling convention. extern "C" void* TLS_GET_ADDR(const TlsIndex* ti) TLS_GET_ADDR_CCONV { TlsDtv* dtv = __get_tcb_dtv(__get_bionic_tcb()); // TODO: See if we can use a relaxed memory ordering here instead. size_t generation = atomic_load(&__libc_tls_generation_copy); if (__predict_true(generation == dtv->generation)) { void* mod_ptr = dtv->modules[__tls_module_id_to_idx(ti->module_id)]; if (__predict_true(mod_ptr != nullptr)) { return static_cast(mod_ptr) + ti->offset; } } return tls_get_addr_slow_path(ti); } // This function frees: // - TLS modules referenced by the current DTV. // - The list of DTV objects associated with the current thread. // // The caller must have already blocked signals. void __free_dynamic_tls(bionic_tcb* tcb) { TlsModules& modules = __libc_shared_globals()->tls_modules; BionicAllocator& allocator = __libc_shared_globals()->tls_allocator; // If we didn't allocate any dynamic memory, skip out early without taking // the lock. TlsDtv* dtv = __get_tcb_dtv(tcb); if (dtv->generation == kTlsGenerationNone) { return; } // We need the write lock to use the allocator. ScopedWriteLock locker(&modules.rwlock); // First free everything in the current DTV. for (size_t i = 0; i < dtv->count; ++i) { if (i < modules.module_count && modules.module_table[i].static_offset != SIZE_MAX) { // This module's TLS memory is allocated statically, so don't free it here. continue; } if (modules.on_destruction_cb != nullptr) { void* dtls_begin = dtv->modules[i]; void* dtls_end = static_cast(static_cast(dtls_begin) + allocator.get_chunk_size(dtls_begin)); modules.on_destruction_cb(dtls_begin, dtls_end); } allocator.free(dtv->modules[i]); } // Now free the thread's list of DTVs. while (dtv->generation != kTlsGenerationNone) { TlsDtv* next = dtv->next; allocator.free(dtv); dtv = next; } // Clear the DTV slot. The DTV must not be used again with this thread. tcb->tls_slot(TLS_SLOT_DTV) = nullptr; } // Invokes all the registered thread_exit callbacks, if any. void __notify_thread_exit_callbacks() { TlsModules& modules = __libc_shared_globals()->tls_modules; if (modules.first_thread_exit_callback == nullptr) { // If there is no first_thread_exit_callback, there shouldn't be a tail. CHECK(modules.thread_exit_callback_tail_node == nullptr); return; } // Callbacks are supposed to be invoked in the reverse order // in which they were registered. CallbackHolder* node = modules.thread_exit_callback_tail_node; while (node != nullptr) { node->cb(); node = node->prev; } modules.first_thread_exit_callback(); }