/* * Copyright (C) 2013 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include "private/bionic_allocator.h" #include namespace { /* * this one has size below allocator cap which is 2*sizeof(void*) */ struct test_struct_small { char str[5]; }; struct test_struct_large { char str[1009]; }; struct test_struct_huge { char str[73939]; }; struct test_struct_512 { char str[503]; }; }; static size_t kPageSize = sysconf(_SC_PAGE_SIZE); TEST(bionic_allocator, test_alloc_0) { BionicAllocator allocator; void* ptr = allocator.alloc(0); ASSERT_TRUE(ptr != nullptr); allocator.free(ptr); } TEST(bionic_allocator, test_free_nullptr) { BionicAllocator allocator; allocator.free(nullptr); } TEST(bionic_allocator, test_realloc) { BionicAllocator allocator; uint32_t* array = reinterpret_cast(allocator.alloc(512)); const size_t array_size = 512 / sizeof(uint32_t); uint32_t model[1000]; model[0] = 1; model[1] = 1; for (size_t i = 2; i < 1000; ++i) { model[i] = model[i - 1] + model[i - 2]; } memcpy(array, model, array_size); uint32_t* reallocated_ptr = reinterpret_cast(allocator.realloc(array, 1024)); ASSERT_TRUE(reallocated_ptr != nullptr); ASSERT_TRUE(reallocated_ptr != array); ASSERT_TRUE(memcmp(reallocated_ptr, model, array_size) == 0); array = reallocated_ptr; memcpy(array, model, 2*array_size); reallocated_ptr = reinterpret_cast(allocator.realloc(array, 62)); ASSERT_TRUE(reallocated_ptr == array); reallocated_ptr = reinterpret_cast(allocator.realloc(array, 4000)); ASSERT_TRUE(reallocated_ptr != nullptr); ASSERT_TRUE(reallocated_ptr != array); ASSERT_EQ(0U, reinterpret_cast(reallocated_ptr) % 16); ASSERT_TRUE(memcmp(reallocated_ptr, model, array_size * 2) == 0); array = reallocated_ptr; memcpy(array, model, 4000); reallocated_ptr = reinterpret_cast(allocator.realloc(array, 64000)); ASSERT_TRUE(reallocated_ptr != nullptr); ASSERT_TRUE(reallocated_ptr != array); ASSERT_EQ(0U, reinterpret_cast(reallocated_ptr) % 16); ASSERT_TRUE(memcmp(reallocated_ptr, model, 4000) == 0); ASSERT_EQ(nullptr, allocator.realloc(reallocated_ptr, 0)); } TEST(bionic_allocator, test_small_smoke) { BionicAllocator allocator; uint8_t zeros[16]; memset(zeros, 0, sizeof(zeros)); test_struct_small* ptr1 = reinterpret_cast(allocator.alloc(sizeof(test_struct_small))); test_struct_small* ptr2 = reinterpret_cast(allocator.alloc(sizeof(test_struct_small))); ASSERT_TRUE(ptr1 != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr1) % 16); ASSERT_TRUE(ptr2 != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr2) % 16); ASSERT_EQ(reinterpret_cast(ptr1)+16, reinterpret_cast(ptr2)); ASSERT_TRUE(memcmp(ptr1, zeros, 16) == 0); allocator.free(ptr1); allocator.free(ptr2); } TEST(bionic_allocator, test_huge_smoke) { BionicAllocator allocator; // this should trigger proxy-to-mmap test_struct_huge* ptr1 = reinterpret_cast(allocator.alloc(sizeof(test_struct_huge))); test_struct_huge* ptr2 = reinterpret_cast(allocator.alloc(sizeof(test_struct_huge))); ASSERT_TRUE(ptr1 != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr1) % 16); ASSERT_TRUE(ptr2 != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr2) % 16); ASSERT_TRUE( reinterpret_cast(ptr1)/kPageSize != reinterpret_cast(ptr2)/kPageSize); allocator.free(ptr2); allocator.free(ptr1); } TEST(bionic_allocator, test_large) { BionicAllocator allocator; test_struct_large* ptr1 = reinterpret_cast(allocator.alloc(sizeof(test_struct_large))); test_struct_large* ptr2 = reinterpret_cast(allocator.alloc(1024)); ASSERT_TRUE(ptr1 != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr1) % 16); ASSERT_TRUE(ptr2 != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr2) % 16); ASSERT_EQ(reinterpret_cast(ptr1) + 1024, reinterpret_cast(ptr2)); // let's allocate until we reach the next page. size_t n = kPageSize / sizeof(test_struct_large) + 1 - 2; test_struct_large* objects[n]; for (size_t i = 0; i < n; ++i) { test_struct_large* obj_ptr = reinterpret_cast(allocator.alloc(sizeof(test_struct_large))); ASSERT_TRUE(obj_ptr != nullptr); objects[i] = obj_ptr; } test_struct_large* ptr_to_free = reinterpret_cast(allocator.alloc(sizeof(test_struct_large))); ASSERT_TRUE(ptr_to_free != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr_to_free) % 16); allocator.free(ptr1); for (size_t i=0; i(ptr) % 0x100); allocator.free(ptr); // small objects are automatically aligned to their size. ptr = allocator.alloc(0x200); ASSERT_TRUE(ptr != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr) % 0x200); allocator.free(ptr); // the size (0x10) is bumped up to the alignment (0x100) ptr = allocator.memalign(0x100, 0x10); ASSERT_TRUE(ptr != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr) % 0x100); allocator.free(ptr); } TEST(bionic_allocator, test_memalign_large) { BionicAllocator allocator; void* ptr; size_t alignment; // a large object with alignment < kPageSize alignment = kPageSize >> 1; ptr = allocator.memalign(alignment, 0x2000); ASSERT_TRUE(ptr != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr) % alignment); allocator.free(ptr); // a large object with alignment == kPageSize alignment = kPageSize; ptr = allocator.memalign(alignment, 0x2000); ASSERT_TRUE(ptr != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr) % alignment); allocator.free(ptr); // A large object with alignment > kPageSize is only guaranteed to have page // alignment. alignment = kPageSize << 1; ptr = allocator.memalign(alignment, 0x4000); ASSERT_TRUE(ptr != nullptr); ASSERT_EQ(0U, reinterpret_cast(ptr) % kPageSize); allocator.free(ptr); }