/* * Copyright (C) 2012 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Config.h" #include "DebugData.h" #include "LogAllocatorStats.h" #include "Unreachable.h" #include "UnwindBacktrace.h" #include "backtrace.h" #include "debug_disable.h" #include "debug_log.h" #include "malloc_debug.h" // ------------------------------------------------------------------------ // Global Data // ------------------------------------------------------------------------ DebugData* g_debug; bool* g_zygote_child; const MallocDispatch* g_dispatch; static inline __always_inline uint64_t Nanotime() { struct timespec t = {}; clock_gettime(CLOCK_MONOTONIC, &t); return static_cast(t.tv_sec) * 1000000000LL + t.tv_nsec; } namespace { // A TimedResult contains the result of from malloc end_ns al. functions and the // start/end timestamps. struct TimedResult { uint64_t start_ns = 0; uint64_t end_ns = 0; union { size_t s; int i; void* p; } v; uint64_t GetStartTimeNS() const { return start_ns; } uint64_t GetEndTimeNS() const { return end_ns; } void SetStartTimeNS(uint64_t t) { start_ns = t; } void SetEndTimeNS(uint64_t t) { end_ns = t; } template void setValue(T); template <> void setValue(size_t s) { v.s = s; } template <> void setValue(int i) { v.i = i; } template <> void setValue(void* p) { v.p = p; } template T getValue() const; template <> size_t getValue() const { return v.s; } template <> int getValue() const { return v.i; } template <> void* getValue() const { return v.p; } }; class ScopedTimer { public: ScopedTimer(TimedResult& res) : res_(res) { res_.start_ns = Nanotime(); } ~ScopedTimer() { res_.end_ns = Nanotime(); } private: TimedResult& res_; }; } // namespace template static TimedResult TimerCall(MallocFn fn, Args... args) { TimedResult ret; decltype((g_dispatch->*fn)(args...)) r; if (g_debug->config().options() & RECORD_ALLOCS) { ScopedTimer t(ret); r = (g_dispatch->*fn)(args...); } else { r = (g_dispatch->*fn)(args...); } ret.setValue(r); return ret; } template static TimedResult TimerCallVoid(MallocFn fn, Args... args) { TimedResult ret; { ScopedTimer t(ret); (g_dispatch->*fn)(args...); } return ret; } #define TCALL(FUNC, ...) TimerCall(&MallocDispatch::FUNC, __VA_ARGS__); #define TCALLVOID(FUNC, ...) TimerCallVoid(&MallocDispatch::FUNC, __VA_ARGS__); // ------------------------------------------------------------------------ // ------------------------------------------------------------------------ // Use C style prototypes for all exported functions. This makes it easy // to do dlsym lookups during libc initialization when malloc debug // is enabled. // ------------------------------------------------------------------------ __BEGIN_DECLS bool debug_initialize(const MallocDispatch* malloc_dispatch, bool* malloc_zygote_child, const char* options); void debug_finalize(); void debug_dump_heap(const char* file_name); void debug_get_malloc_leak_info(uint8_t** info, size_t* overall_size, size_t* info_size, size_t* total_memory, size_t* backtrace_size); bool debug_write_malloc_leak_info(FILE* fp); ssize_t debug_malloc_backtrace(void* pointer, uintptr_t* frames, size_t frame_count); void debug_free_malloc_leak_info(uint8_t* info); size_t debug_malloc_usable_size(void* pointer); void* debug_malloc(size_t size); void debug_free(void* pointer); void* debug_aligned_alloc(size_t alignment, size_t size); void* debug_memalign(size_t alignment, size_t bytes); void* debug_realloc(void* pointer, size_t bytes); void* debug_calloc(size_t nmemb, size_t bytes); struct mallinfo debug_mallinfo(); int debug_mallopt(int param, int value); int debug_malloc_info(int options, FILE* fp); int debug_posix_memalign(void** memptr, size_t alignment, size_t size); int debug_malloc_iterate(uintptr_t base, size_t size, void (*callback)(uintptr_t base, size_t size, void* arg), void* arg); void debug_malloc_disable(); void debug_malloc_enable(); #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) void* debug_pvalloc(size_t bytes); void* debug_valloc(size_t size); #endif __END_DECLS // ------------------------------------------------------------------------ class ScopedConcurrentLock { public: ScopedConcurrentLock() { pthread_rwlock_rdlock(&lock_); } ~ScopedConcurrentLock() { pthread_rwlock_unlock(&lock_); } static void Init() { pthread_rwlockattr_t attr; // Set the attribute so that when a write lock is pending, read locks are no // longer granted. pthread_rwlockattr_setkind_np(&attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP); pthread_rwlock_init(&lock_, &attr); } static void BlockAllOperations() { pthread_rwlock_wrlock(&lock_); } private: static pthread_rwlock_t lock_; }; pthread_rwlock_t ScopedConcurrentLock::lock_; // Use this because the sigprocmask* functions filter out the reserved bionic // signals including the signal this code blocks. static inline int __rt_sigprocmask(int how, const sigset64_t* new_set, sigset64_t* old_set, size_t sigset_size) { return syscall(SYS_rt_sigprocmask, how, new_set, old_set, sigset_size); } // Need to block the backtrace signal while in malloc debug routines // otherwise there is a chance of a deadlock and timeout when unwinding. // This can occur if a thread is paused while owning a malloc debug // internal lock. class ScopedBacktraceSignalBlocker { public: ScopedBacktraceSignalBlocker() { sigemptyset64(&backtrace_set_); sigaddset64(&backtrace_set_, BIONIC_SIGNAL_BACKTRACE); sigset64_t old_set; __rt_sigprocmask(SIG_BLOCK, &backtrace_set_, &old_set, sizeof(backtrace_set_)); if (sigismember64(&old_set, BIONIC_SIGNAL_BACKTRACE)) { unblock_ = false; } } ~ScopedBacktraceSignalBlocker() { if (unblock_) { __rt_sigprocmask(SIG_UNBLOCK, &backtrace_set_, nullptr, sizeof(backtrace_set_)); } } private: bool unblock_ = true; sigset64_t backtrace_set_; }; static void InitAtfork() { static pthread_once_t atfork_init = PTHREAD_ONCE_INIT; pthread_once(&atfork_init, []() { pthread_atfork( []() { if (g_debug != nullptr) { g_debug->PrepareFork(); } }, []() { if (g_debug != nullptr) { g_debug->PostForkParent(); } }, []() { if (g_debug != nullptr) { g_debug->PostForkChild(); } }); }); } void BacktraceAndLog() { if (g_debug->config().options() & BACKTRACE_FULL) { std::vector frames; std::vector frames_info; if (!Unwind(&frames, &frames_info, 256)) { error_log(" Backtrace failed to get any frames."); } else { UnwindLog(frames_info); } } else { std::vector frames(256); size_t num_frames = backtrace_get(frames.data(), frames.size()); if (num_frames == 0) { error_log(" Backtrace failed to get any frames."); } else { backtrace_log(frames.data(), num_frames); } } } static void LogError(const void* pointer, const char* error_str) { error_log(LOG_DIVIDER); error_log("+++ ALLOCATION %p %s", pointer, error_str); // If we are tracking already freed pointers, check to see if this is // one so we can print extra information. if (g_debug->config().options() & FREE_TRACK) { PointerData::LogFreeBacktrace(pointer); } error_log("Backtrace at time of failure:"); BacktraceAndLog(); error_log(LOG_DIVIDER); if (g_debug->config().options() & ABORT_ON_ERROR) { abort(); } } static bool VerifyPointer(const void* pointer, const char* function_name) { if (g_debug->HeaderEnabled()) { Header* header = g_debug->GetHeader(pointer); if (header->tag != DEBUG_TAG) { std::string error_str; if (header->tag == DEBUG_FREE_TAG) { error_str = std::string("USED AFTER FREE (") + function_name + ")"; } else { error_str = android::base::StringPrintf("HAS INVALID TAG %" PRIx32 " (%s)", header->tag, function_name); } LogError(pointer, error_str.c_str()); return false; } } if (g_debug->TrackPointers()) { if (!PointerData::Exists(pointer)) { std::string error_str(std::string("UNKNOWN POINTER (") + function_name + ")"); LogError(pointer, error_str.c_str()); return false; } } return true; } static size_t InternalMallocUsableSize(void* pointer) { if (g_debug->HeaderEnabled()) { return g_debug->GetHeader(pointer)->usable_size; } else { return g_dispatch->malloc_usable_size(pointer); } } static void* InitHeader(Header* header, void* orig_pointer, size_t size) { header->tag = DEBUG_TAG; header->orig_pointer = orig_pointer; header->size = size; header->usable_size = g_dispatch->malloc_usable_size(orig_pointer); if (header->usable_size == 0) { g_dispatch->free(orig_pointer); return nullptr; } header->usable_size -= g_debug->pointer_offset() + reinterpret_cast(header) - reinterpret_cast(orig_pointer); if (g_debug->config().options() & FRONT_GUARD) { uint8_t* guard = g_debug->GetFrontGuard(header); memset(guard, g_debug->config().front_guard_value(), g_debug->config().front_guard_bytes()); } if (g_debug->config().options() & REAR_GUARD) { uint8_t* guard = g_debug->GetRearGuard(header); memset(guard, g_debug->config().rear_guard_value(), g_debug->config().rear_guard_bytes()); // If the rear guard is enabled, set the usable size to the exact size // of the allocation. header->usable_size = header->size; } return g_debug->GetPointer(header); } extern "C" void __asan_init() __attribute__((weak)); bool debug_initialize(const MallocDispatch* malloc_dispatch, bool* zygote_child, const char* options) { if (zygote_child == nullptr || options == nullptr) { return false; } if (__asan_init != 0) { error_log("malloc debug cannot be enabled alongside ASAN"); return false; } InitAtfork(); g_zygote_child = zygote_child; g_dispatch = malloc_dispatch; if (!DebugDisableInitialize()) { return false; } DebugData* debug = new DebugData(); if (!debug->Initialize(options) || !Unreachable::Initialize(debug->config())) { delete debug; DebugDisableFinalize(); return false; } g_debug = debug; // Always enable the backtrace code since we will use it in a number // of different error cases. backtrace_startup(); if (g_debug->config().options() & VERBOSE) { info_log("%s: malloc debug enabled", getprogname()); } ScopedConcurrentLock::Init(); return true; } void debug_finalize() { if (g_debug == nullptr) { return; } // Make sure that there are no other threads doing debug allocations // before we kill everything. ScopedConcurrentLock::BlockAllOperations(); // Turn off capturing allocations calls. DebugDisableSet(true); if (g_debug->config().options() & FREE_TRACK) { PointerData::VerifyAllFreed(); } if (g_debug->config().options() & LEAK_TRACK) { PointerData::LogLeaks(); } if ((g_debug->config().options() & BACKTRACE) && g_debug->config().backtrace_dump_on_exit()) { debug_dump_heap(android::base::StringPrintf("%s.%d.exit.txt", g_debug->config().backtrace_dump_prefix().c_str(), getpid()).c_str()); } backtrace_shutdown(); // In order to prevent any issues of threads freeing previous pointers // after the main thread calls this code, simply leak the g_debug pointer // and do not destroy the debug disable pthread key. } void debug_get_malloc_leak_info(uint8_t** info, size_t* overall_size, size_t* info_size, size_t* total_memory, size_t* backtrace_size) { ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; // Verify the arguments. if (info == nullptr || overall_size == nullptr || info_size == nullptr || total_memory == nullptr || backtrace_size == nullptr) { error_log("get_malloc_leak_info: At least one invalid parameter."); return; } *info = nullptr; *overall_size = 0; *info_size = 0; *total_memory = 0; *backtrace_size = 0; if (!(g_debug->config().options() & BACKTRACE)) { error_log( "get_malloc_leak_info: Allocations not being tracked, to enable " "set the option 'backtrace'."); return; } PointerData::GetInfo(info, overall_size, info_size, total_memory, backtrace_size); } void debug_free_malloc_leak_info(uint8_t* info) { g_dispatch->free(info); // Purge the memory that was freed since a significant amount of // memory could have been allocated and freed. g_dispatch->mallopt(M_PURGE_ALL, 0); } size_t debug_malloc_usable_size(void* pointer) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled() || pointer == nullptr) { return g_dispatch->malloc_usable_size(pointer); } ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; if (!VerifyPointer(pointer, "malloc_usable_size")) { return 0; } return InternalMallocUsableSize(pointer); } static TimedResult InternalMalloc(size_t size) { uint64_t options = g_debug->config().options(); if ((options & BACKTRACE) && g_debug->pointer->ShouldDumpAndReset()) { debug_dump_heap(android::base::StringPrintf( "%s.%d.txt", g_debug->config().backtrace_dump_prefix().c_str(), getpid()) .c_str()); } if (options & LOG_ALLOCATOR_STATS_ON_SIGNAL) { LogAllocatorStats::CheckIfShouldLog(); } if (size == 0) { size = 1; } TimedResult result; size_t real_size = size + g_debug->extra_bytes(); if (real_size < size) { // Overflow. errno = ENOMEM; result.setValue(nullptr); return result; } if (size > PointerInfoType::MaxSize()) { errno = ENOMEM; result.setValue(nullptr); return result; } if (g_debug->HeaderEnabled()) { result = TCALL(memalign, MINIMUM_ALIGNMENT_BYTES, real_size); Header* header = reinterpret_cast(result.getValue()); if (header == nullptr) { return result; } result.setValue(InitHeader(header, header, size)); } else { result = TCALL(malloc, real_size); } void* pointer = result.getValue(); if (pointer != nullptr) { if (g_debug->TrackPointers()) { PointerData::Add(pointer, size); } if (g_debug->config().options() & FILL_ON_ALLOC) { size_t bytes = InternalMallocUsableSize(pointer); size_t fill_bytes = g_debug->config().fill_on_alloc_bytes(); bytes = (bytes < fill_bytes) ? bytes : fill_bytes; memset(pointer, g_debug->config().fill_alloc_value(), bytes); } } return result; } void* debug_malloc(size_t size) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->malloc(size); } ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; TimedResult result = InternalMalloc(size); if (g_debug->config().options() & RECORD_ALLOCS) { g_debug->record->AddEntry(new MallocEntry(result.getValue(), size, result.GetStartTimeNS(), result.GetEndTimeNS())); } return result.getValue(); } static TimedResult InternalFree(void* pointer) { uint64_t options = g_debug->config().options(); if ((options & BACKTRACE) && g_debug->pointer->ShouldDumpAndReset()) { debug_dump_heap(android::base::StringPrintf( "%s.%d.txt", g_debug->config().backtrace_dump_prefix().c_str(), getpid()) .c_str()); } if (options & LOG_ALLOCATOR_STATS_ON_SIGNAL) { LogAllocatorStats::CheckIfShouldLog(); } void* free_pointer = pointer; size_t bytes; Header* header; if (g_debug->HeaderEnabled()) { header = g_debug->GetHeader(pointer); free_pointer = header->orig_pointer; if (g_debug->config().options() & FRONT_GUARD) { if (!g_debug->front_guard->Valid(header)) { g_debug->front_guard->LogFailure(header); } } if (g_debug->config().options() & REAR_GUARD) { if (!g_debug->rear_guard->Valid(header)) { g_debug->rear_guard->LogFailure(header); } } header->tag = DEBUG_FREE_TAG; bytes = header->usable_size; } else { bytes = g_dispatch->malloc_usable_size(pointer); } if (g_debug->config().options() & FILL_ON_FREE) { size_t fill_bytes = g_debug->config().fill_on_free_bytes(); fill_bytes = (bytes < fill_bytes) ? bytes : fill_bytes; memset(pointer, g_debug->config().fill_free_value(), fill_bytes); } if (g_debug->TrackPointers()) { PointerData::Remove(pointer); } TimedResult result; if (g_debug->config().options() & FREE_TRACK) { // Do not add the allocation until we are done modifying the pointer // itself. This avoids a race if a lot of threads are all doing // frees at the same time and we wind up trying to really free this // pointer from another thread, while still trying to free it in // this function. pointer = PointerData::AddFreed(pointer, bytes); if (pointer != nullptr && g_debug->HeaderEnabled()) { pointer = g_debug->GetHeader(pointer)->orig_pointer; } result = TCALLVOID(free, pointer); } else { result = TCALLVOID(free, free_pointer); } return result; } void debug_free(void* pointer) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled() || pointer == nullptr) { return g_dispatch->free(pointer); } ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; if (!VerifyPointer(pointer, "free")) { return; } TimedResult result = InternalFree(pointer); if (g_debug->config().options() & RECORD_ALLOCS) { g_debug->record->AddEntry( new FreeEntry(pointer, result.GetStartTimeNS(), result.GetEndTimeNS())); } } void* debug_memalign(size_t alignment, size_t bytes) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->memalign(alignment, bytes); } ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; if (bytes == 0) { bytes = 1; } if (bytes > PointerInfoType::MaxSize()) { errno = ENOMEM; return nullptr; } TimedResult result; void* pointer; if (g_debug->HeaderEnabled()) { // Make the alignment a power of two. if (!powerof2(alignment)) { alignment = BIONIC_ROUND_UP_POWER_OF_2(alignment); } // Force the alignment to at least MINIMUM_ALIGNMENT_BYTES to guarantee // that the header is aligned properly. if (alignment < MINIMUM_ALIGNMENT_BYTES) { alignment = MINIMUM_ALIGNMENT_BYTES; } // We don't have any idea what the natural alignment of // the underlying native allocator is, so we always need to // over allocate. size_t real_size = alignment + bytes + g_debug->extra_bytes(); if (real_size < bytes) { // Overflow. errno = ENOMEM; return nullptr; } result = TCALL(malloc, real_size); pointer = result.getValue(); if (pointer == nullptr) { return nullptr; } uintptr_t value = reinterpret_cast(pointer) + g_debug->pointer_offset(); // Now align the pointer. value += (-value % alignment); Header* header = g_debug->GetHeader(reinterpret_cast(value)); // Don't need to update `result` here because we only need the timestamps. pointer = InitHeader(header, pointer, bytes); } else { size_t real_size = bytes + g_debug->extra_bytes(); if (real_size < bytes) { // Overflow. errno = ENOMEM; return nullptr; } result = TCALL(memalign, alignment, real_size); pointer = result.getValue(); } if (pointer != nullptr) { if (g_debug->TrackPointers()) { PointerData::Add(pointer, bytes); } if (g_debug->config().options() & FILL_ON_ALLOC) { size_t bytes = InternalMallocUsableSize(pointer); size_t fill_bytes = g_debug->config().fill_on_alloc_bytes(); bytes = (bytes < fill_bytes) ? bytes : fill_bytes; memset(pointer, g_debug->config().fill_alloc_value(), bytes); } if (g_debug->config().options() & RECORD_ALLOCS) { g_debug->record->AddEntry(new MemalignEntry(pointer, bytes, alignment, result.GetStartTimeNS(), result.GetEndTimeNS())); } } return pointer; } void* debug_realloc(void* pointer, size_t bytes) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->realloc(pointer, bytes); } ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; if (pointer == nullptr) { TimedResult result = InternalMalloc(bytes); if (g_debug->config().options() & RECORD_ALLOCS) { g_debug->record->AddEntry(new ReallocEntry(result.getValue(), bytes, nullptr, result.GetStartTimeNS(), result.GetEndTimeNS())); } pointer = result.getValue(); return pointer; } if (!VerifyPointer(pointer, "realloc")) { return nullptr; } if (bytes == 0) { TimedResult result = InternalFree(pointer); if (g_debug->config().options() & RECORD_ALLOCS) { g_debug->record->AddEntry(new ReallocEntry(nullptr, bytes, pointer, result.GetStartTimeNS(), result.GetEndTimeNS())); } return nullptr; } size_t real_size = bytes; if (g_debug->config().options() & EXPAND_ALLOC) { real_size += g_debug->config().expand_alloc_bytes(); if (real_size < bytes) { // Overflow. errno = ENOMEM; return nullptr; } } if (bytes > PointerInfoType::MaxSize()) { errno = ENOMEM; return nullptr; } TimedResult result; void* new_pointer; size_t prev_size; if (g_debug->HeaderEnabled()) { // Same size, do nothing. Header* header = g_debug->GetHeader(pointer); if (real_size == header->size) { if (g_debug->TrackPointers()) { // Remove and re-add so that the backtrace is updated. PointerData::Remove(pointer); PointerData::Add(pointer, real_size); } return pointer; } // Allocation is shrinking. if (real_size < header->usable_size) { header->size = real_size; if (g_debug->config().options() & REAR_GUARD) { // Don't bother allocating a smaller pointer in this case, simply // change the header usable_size and reset the rear guard. header->usable_size = header->size; memset(g_debug->GetRearGuard(header), g_debug->config().rear_guard_value(), g_debug->config().rear_guard_bytes()); } if (g_debug->TrackPointers()) { // Remove and re-add so that the backtrace is updated. PointerData::Remove(pointer); PointerData::Add(pointer, real_size); } return pointer; } // Allocate the new size. result = InternalMalloc(bytes); new_pointer = result.getValue(); if (new_pointer == nullptr) { errno = ENOMEM; return nullptr; } prev_size = header->usable_size; memcpy(new_pointer, pointer, prev_size); TimedResult free_time = InternalFree(pointer); // `realloc` is split into two steps, update the end time to the finish time // of the second operation. result.SetEndTimeNS(free_time.GetEndTimeNS()); } else { if (g_debug->TrackPointers()) { PointerData::Remove(pointer); } prev_size = g_dispatch->malloc_usable_size(pointer); result = TCALL(realloc, pointer, real_size); new_pointer = result.getValue(); if (new_pointer == nullptr) { return nullptr; } if (g_debug->TrackPointers()) { PointerData::Add(new_pointer, real_size); } } if (g_debug->config().options() & FILL_ON_ALLOC) { size_t bytes = InternalMallocUsableSize(new_pointer); if (bytes > g_debug->config().fill_on_alloc_bytes()) { bytes = g_debug->config().fill_on_alloc_bytes(); } if (bytes > prev_size) { memset(reinterpret_cast(reinterpret_cast(new_pointer) + prev_size), g_debug->config().fill_alloc_value(), bytes - prev_size); } } if (g_debug->config().options() & RECORD_ALLOCS) { g_debug->record->AddEntry(new ReallocEntry(new_pointer, bytes, pointer, result.GetStartTimeNS(), result.GetEndTimeNS())); } return new_pointer; } void* debug_calloc(size_t nmemb, size_t bytes) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->calloc(nmemb, bytes); } ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; size_t size; if (__builtin_mul_overflow(nmemb, bytes, &size)) { // Overflow errno = ENOMEM; return nullptr; } if (size == 0) { size = 1; } size_t real_size; if (__builtin_add_overflow(size, g_debug->extra_bytes(), &real_size)) { // Overflow. errno = ENOMEM; return nullptr; } if (real_size > PointerInfoType::MaxSize()) { errno = ENOMEM; return nullptr; } void* pointer; TimedResult result; if (g_debug->HeaderEnabled()) { // Need to guarantee the alignment of the header. result = TCALL(memalign, MINIMUM_ALIGNMENT_BYTES, real_size); Header* header = reinterpret_cast(result.getValue()); if (header == nullptr) { return nullptr; } memset(header, 0, g_dispatch->malloc_usable_size(header)); pointer = InitHeader(header, header, size); } else { result = TCALL(calloc, 1, real_size); pointer = result.getValue(); } if (g_debug->config().options() & RECORD_ALLOCS) { g_debug->record->AddEntry( new CallocEntry(pointer, nmemb, bytes, result.GetStartTimeNS(), result.GetEndTimeNS())); } if (pointer != nullptr && g_debug->TrackPointers()) { PointerData::Add(pointer, size); } return pointer; } struct mallinfo debug_mallinfo() { return g_dispatch->mallinfo(); } int debug_mallopt(int param, int value) { return g_dispatch->mallopt(param, value); } int debug_malloc_info(int options, FILE* fp) { if (DebugCallsDisabled() || !g_debug->TrackPointers()) { return g_dispatch->malloc_info(options, fp); } // Make sure any pending output is written to the file. fflush(fp); ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; // Avoid any issues where allocations are made that will be freed // in the fclose. int fd = fileno(fp); MallocXmlElem root(fd, "malloc", "version=\"debug-malloc-1\""); std::vector list; PointerData::GetAllocList(&list); size_t alloc_num = 0; for (size_t i = 0; i < list.size(); i++) { MallocXmlElem alloc(fd, "allocation", "nr=\"%zu\"", alloc_num); size_t total = 1; size_t size = list[i].size; while (i < list.size() - 1 && list[i + 1].size == size) { i++; total++; } MallocXmlElem(fd, "size").Contents("%zu", list[i].size); MallocXmlElem(fd, "total").Contents("%zu", total); alloc_num++; } return 0; } void* debug_aligned_alloc(size_t alignment, size_t size) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->aligned_alloc(alignment, size); } if (!powerof2(alignment) || (size % alignment) != 0) { errno = EINVAL; return nullptr; } return debug_memalign(alignment, size); } int debug_posix_memalign(void** memptr, size_t alignment, size_t size) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->posix_memalign(memptr, alignment, size); } if (alignment < sizeof(void*) || !powerof2(alignment)) { return EINVAL; } int saved_errno = errno; *memptr = debug_memalign(alignment, size); errno = saved_errno; return (*memptr != nullptr) ? 0 : ENOMEM; } int debug_malloc_iterate(uintptr_t base, size_t size, void (*callback)(uintptr_t, size_t, void*), void* arg) { ScopedConcurrentLock lock; if (g_debug->TrackPointers()) { PointerData::IteratePointers([&callback, &arg](uintptr_t pointer) { callback(pointer, InternalMallocUsableSize(reinterpret_cast(pointer)), arg); }); return 0; } // An option that adds a header will add pointer tracking, so no need to // check if headers are enabled. return g_dispatch->malloc_iterate(base, size, callback, arg); } void debug_malloc_disable() { ScopedConcurrentLock lock; g_dispatch->malloc_disable(); if (g_debug->pointer) { g_debug->pointer->PrepareFork(); } } void debug_malloc_enable() { ScopedConcurrentLock lock; if (g_debug->pointer) { g_debug->pointer->PostForkParent(); } g_dispatch->malloc_enable(); } ssize_t debug_malloc_backtrace(void* pointer, uintptr_t* frames, size_t max_frames) { if (DebugCallsDisabled() || pointer == nullptr) { return 0; } ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; if (!(g_debug->config().options() & BACKTRACE)) { return 0; } pointer = UntagPointer(pointer); return PointerData::GetFrames(pointer, frames, max_frames); } #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) void* debug_pvalloc(size_t bytes) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->pvalloc(bytes); } size_t pagesize = getpagesize(); size_t size = __BIONIC_ALIGN(bytes, pagesize); if (size < bytes) { // Overflow errno = ENOMEM; return nullptr; } return debug_memalign(pagesize, size); } void* debug_valloc(size_t size) { Unreachable::CheckIfRequested(g_debug->config()); if (DebugCallsDisabled()) { return g_dispatch->valloc(size); } return debug_memalign(getpagesize(), size); } #endif static std::mutex g_dump_lock; static void write_dump(int fd) { dprintf(fd, "Android Native Heap Dump v1.2\n\n"); std::string fingerprint = android::base::GetProperty("ro.build.fingerprint", "unknown"); dprintf(fd, "Build fingerprint: '%s'\n\n", fingerprint.c_str()); PointerData::DumpLiveToFile(fd); dprintf(fd, "MAPS\n"); std::string content; if (!android::base::ReadFileToString("/proc/self/maps", &content)) { dprintf(fd, "Could not open /proc/self/maps\n"); } else { dprintf(fd, "%s", content.c_str()); } dprintf(fd, "END\n"); // Purge the memory that was allocated and freed during this operation // since it can be large enough to expand the RSS significantly. g_dispatch->mallopt(M_PURGE_ALL, 0); } bool debug_write_malloc_leak_info(FILE* fp) { // Make sure any pending output is written to the file. fflush(fp); ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; std::lock_guard guard(g_dump_lock); if (!(g_debug->config().options() & BACKTRACE)) { return false; } write_dump(fileno(fp)); return true; } void debug_dump_heap(const char* file_name) { ScopedConcurrentLock lock; ScopedDisableDebugCalls disable; ScopedBacktraceSignalBlocker blocked; std::lock_guard guard(g_dump_lock); int fd = open(file_name, O_RDWR | O_CREAT | O_NOFOLLOW | O_TRUNC | O_CLOEXEC, 0644); if (fd == -1) { error_log("Unable to create file: %s", file_name); return; } error_log("Dumping to file: %s\n", file_name); write_dump(fd); close(fd); }