/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include // Fool stdatomic.h into not using . #undef _USING_LIBCXX #include #include #include TEST(stdatomic, LOCK_FREE) { ASSERT_TRUE(ATOMIC_BOOL_LOCK_FREE); ASSERT_TRUE(ATOMIC_CHAR16_T_LOCK_FREE); ASSERT_TRUE(ATOMIC_CHAR32_T_LOCK_FREE); ASSERT_TRUE(ATOMIC_CHAR_LOCK_FREE); ASSERT_TRUE(ATOMIC_INT_LOCK_FREE); ASSERT_TRUE(ATOMIC_LLONG_LOCK_FREE); ASSERT_TRUE(ATOMIC_LONG_LOCK_FREE); ASSERT_TRUE(ATOMIC_POINTER_LOCK_FREE); ASSERT_TRUE(ATOMIC_SHORT_LOCK_FREE); ASSERT_TRUE(ATOMIC_WCHAR_T_LOCK_FREE); } TEST(stdatomic, init) { atomic_int v = ATOMIC_VAR_INIT(123); ASSERT_EQ(123, atomic_load(&v)); atomic_init(&v, 456); ASSERT_EQ(456, atomic_load(&v)); atomic_flag f = ATOMIC_FLAG_INIT; ASSERT_FALSE(atomic_flag_test_and_set(&f)); } TEST(stdatomic, atomic_thread_fence) { atomic_thread_fence(memory_order_relaxed); atomic_thread_fence(memory_order_consume); atomic_thread_fence(memory_order_acquire); atomic_thread_fence(memory_order_release); atomic_thread_fence(memory_order_acq_rel); atomic_thread_fence(memory_order_seq_cst); } TEST(stdatomic, atomic_signal_fence) { atomic_signal_fence(memory_order_relaxed); atomic_signal_fence(memory_order_consume); atomic_signal_fence(memory_order_acquire); atomic_signal_fence(memory_order_release); atomic_signal_fence(memory_order_acq_rel); atomic_signal_fence(memory_order_seq_cst); } TEST(stdatomic, atomic_is_lock_free) { atomic_char small; ASSERT_TRUE(atomic_is_lock_free(&small)); atomic_intmax_t big; // atomic_intmax_t(size = 64) is not lock free on mips32. #if defined(__mips__) && !defined(__LP64__) ASSERT_FALSE(atomic_is_lock_free(&big)); #else ASSERT_TRUE(atomic_is_lock_free(&big)); #endif } TEST(stdatomic, atomic_flag) { atomic_flag f = ATOMIC_FLAG_INIT; ASSERT_FALSE(atomic_flag_test_and_set(&f)); ASSERT_TRUE(atomic_flag_test_and_set(&f)); atomic_flag_clear(&f); ASSERT_FALSE(atomic_flag_test_and_set_explicit(&f, memory_order_relaxed)); ASSERT_TRUE(atomic_flag_test_and_set_explicit(&f, memory_order_relaxed)); atomic_flag_clear_explicit(&f, memory_order_relaxed); ASSERT_FALSE(atomic_flag_test_and_set_explicit(&f, memory_order_relaxed)); } TEST(stdatomic, atomic_store) { atomic_int i; atomic_store(&i, 123); ASSERT_EQ(123, atomic_load(&i)); atomic_store_explicit(&i, 123, memory_order_relaxed); ASSERT_EQ(123, atomic_load_explicit(&i, memory_order_relaxed)); } TEST(stdatomic, atomic_exchange) { atomic_int i; atomic_store(&i, 123); ASSERT_EQ(123, atomic_exchange(&i, 456)); ASSERT_EQ(456, atomic_exchange_explicit(&i, 123, memory_order_relaxed)); } TEST(stdatomic, atomic_compare_exchange) { atomic_int i; int expected; atomic_store(&i, 123); expected = 123; ASSERT_TRUE(atomic_compare_exchange_strong(&i, &expected, 456)); ASSERT_FALSE(atomic_compare_exchange_strong(&i, &expected, 456)); ASSERT_EQ(456, expected); atomic_store(&i, 123); expected = 123; ASSERT_TRUE(atomic_compare_exchange_strong_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed)); ASSERT_FALSE(atomic_compare_exchange_strong_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed)); ASSERT_EQ(456, expected); atomic_store(&i, 123); expected = 123; ASSERT_TRUE(atomic_compare_exchange_weak(&i, &expected, 456)); ASSERT_FALSE(atomic_compare_exchange_weak(&i, &expected, 456)); ASSERT_EQ(456, expected); atomic_store(&i, 123); expected = 123; ASSERT_TRUE(atomic_compare_exchange_weak_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed)); ASSERT_FALSE(atomic_compare_exchange_weak_explicit(&i, &expected, 456, memory_order_relaxed, memory_order_relaxed)); ASSERT_EQ(456, expected); } TEST(stdatomic, atomic_fetch_add) { atomic_int i = ATOMIC_VAR_INIT(123); ASSERT_EQ(123, atomic_fetch_add(&i, 1)); ASSERT_EQ(124, atomic_fetch_add_explicit(&i, 1, memory_order_relaxed)); ASSERT_EQ(125, atomic_load(&i)); } TEST(stdatomic, atomic_fetch_sub) { atomic_int i = ATOMIC_VAR_INIT(123); ASSERT_EQ(123, atomic_fetch_sub(&i, 1)); ASSERT_EQ(122, atomic_fetch_sub_explicit(&i, 1, memory_order_relaxed)); ASSERT_EQ(121, atomic_load(&i)); } TEST(stdatomic, atomic_fetch_or) { atomic_int i = ATOMIC_VAR_INIT(0x100); ASSERT_EQ(0x100, atomic_fetch_or(&i, 0x020)); ASSERT_EQ(0x120, atomic_fetch_or_explicit(&i, 0x003, memory_order_relaxed)); ASSERT_EQ(0x123, atomic_load(&i)); } TEST(stdatomic, atomic_fetch_xor) { atomic_int i = ATOMIC_VAR_INIT(0x100); ASSERT_EQ(0x100, atomic_fetch_xor(&i, 0x120)); ASSERT_EQ(0x020, atomic_fetch_xor_explicit(&i, 0x103, memory_order_relaxed)); ASSERT_EQ(0x123, atomic_load(&i)); } TEST(stdatomic, atomic_fetch_and) { atomic_int i = ATOMIC_VAR_INIT(0x123); ASSERT_EQ(0x123, atomic_fetch_and(&i, 0x00f)); ASSERT_EQ(0x003, atomic_fetch_and_explicit(&i, 0x2, memory_order_relaxed)); ASSERT_EQ(0x002, atomic_load(&i)); } // And a rudimentary test of acquire-release memory ordering: constexpr static uint_least32_t BIG = 10000000ul; // Assumed even below. struct three_atomics { atomic_uint_least32_t x; char a[123]; // Everything in different cache lines, // increase chance of compiler getting alignment wrong. atomic_uint_least32_t y; char b[4013]; atomic_uint_least32_t z; }; // Very simple acquire/release memory ordering sanity check. static void* writer(void* arg) { three_atomics* a = reinterpret_cast(arg); for (uint_least32_t i = 0; i <= BIG; i+=2) { atomic_store_explicit(&a->x, i, memory_order_relaxed); atomic_store_explicit(&a->z, i, memory_order_relaxed); atomic_store_explicit(&a->y, i, memory_order_release); atomic_store_explicit(&a->x, i+1, memory_order_relaxed); atomic_store_explicit(&a->z, i+1, memory_order_relaxed); atomic_store_explicit(&a->y, i+1, memory_order_release); } return 0; } static void* reader(void* arg) { three_atomics* a = reinterpret_cast(arg); uint_least32_t xval = 0, yval = 0, zval = 0; size_t repeat = 0; size_t repeat_limit = 1000; while (yval != BIG + 1) { yval = atomic_load_explicit(&a->y, memory_order_acquire); zval = atomic_load_explicit(&a->z, memory_order_relaxed); xval = atomic_load_explicit(&a->x, memory_order_relaxed); // If we see a given value of y, the immediately preceding // stores to z and x, or later ones, should also be visible. if (zval < yval) { // Cant just ASSERT, since we are in a non-void function. ADD_FAILURE() << "acquire-release ordering violation: " << zval << " < " << yval << ", " << xval << "\n"; return 0; // Only report once. } if (xval < yval) { // Cant just ASSERT, since we are in a non-void function. ADD_FAILURE() << "acquire-release ordering violation: " << xval << " < " << yval << ", " << zval << "\n"; return 0; // Only report once. } if (repeat < repeat_limit) ++repeat; } // The following assertion is not technically guaranteed to hold. // But if it fails to hold, this test was useless, and we have a // serious scheduling issue that we should probably know about. EXPECT_EQ(repeat, repeat_limit); return 0; } TEST(stdatomic, ordering) { // Run a memory ordering sanity test. void* result; three_atomics a; atomic_init(&a.x, 0ul); atomic_init(&a.y, 0ul); atomic_init(&a.z, 0ul); pthread_t t1,t2; ASSERT_EQ(0, pthread_create(&t1, 0, reader, &a)); ASSERT_EQ(0, pthread_create(&t2, 0, writer, &a)); ASSERT_EQ(0, pthread_join(t1, &result)); EXPECT_EQ(0, result); ASSERT_EQ(0, pthread_join(t2, &result)); EXPECT_EQ(0, result); EXPECT_EQ(atomic_load_explicit(&a.x, memory_order_consume), BIG + 1); EXPECT_EQ(atomic_load_explicit(&a.y, memory_order_seq_cst), BIG + 1); EXPECT_EQ(atomic_load(&a.z), BIG + 1); }