/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include static int child_fn(void* i_ptr) { *reinterpret_cast(i_ptr) = 42; return 123; } #if defined(__BIONIC__) TEST(sched, clone) { void* child_stack[1024]; int i = 0; pid_t tid = clone(child_fn, &child_stack[1024], CLONE_VM, &i); int status; ASSERT_EQ(tid, TEMP_FAILURE_RETRY(waitpid(tid, &status, __WCLONE))); ASSERT_EQ(42, i); ASSERT_TRUE(WIFEXITED(status)); ASSERT_EQ(123, WEXITSTATUS(status)); } #else // For glibc, any call to clone with CLONE_VM set will cause later pthread // calls in the same process to misbehave. // See https://sourceware.org/bugzilla/show_bug.cgi?id=10311 for more details. TEST(sched, clone) { // In order to enumerate all possible tests for CTS, create an empty test. GTEST_SKIP() << "glibc is broken"; } #endif TEST(sched, clone_errno) { // Check that our hand-written clone assembler sets errno correctly on failure. uintptr_t fake_child_stack[16]; errno = 0; // If CLONE_THREAD is set, CLONE_SIGHAND must be set too. ASSERT_EQ(-1, clone(child_fn, &fake_child_stack[16], CLONE_THREAD, nullptr)); ASSERT_EQ(EINVAL, errno); } TEST(sched, clone_null_child_stack) { int i = 0; errno = 0; ASSERT_EQ(-1, clone(child_fn, nullptr, CLONE_VM, &i)); ASSERT_EQ(EINVAL, errno); } TEST(sched, cpu_set) { cpu_set_t set; CPU_ZERO(&set); CPU_SET(0, &set); CPU_SET(17, &set); for (int i = 0; i < CPU_SETSIZE; i++) { ASSERT_EQ(i == 0 || i == 17, CPU_ISSET(i, &set)); } // We should fail silently if we try to set/test outside the range. CPU_SET(CPU_SETSIZE, &set); ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set)); } TEST(sched, cpu_count) { cpu_set_t set; CPU_ZERO(&set); ASSERT_EQ(0, CPU_COUNT(&set)); CPU_SET(2, &set); CPU_SET(10, &set); ASSERT_EQ(2, CPU_COUNT(&set)); CPU_CLR(10, &set); ASSERT_EQ(1, CPU_COUNT(&set)); } TEST(sched, cpu_zero) { cpu_set_t set; CPU_ZERO(&set); ASSERT_EQ(0, CPU_COUNT(&set)); for (int i = 0; i < CPU_SETSIZE; i++) { ASSERT_FALSE(CPU_ISSET(i, &set)); } } TEST(sched, cpu_clr) { cpu_set_t set; CPU_ZERO(&set); CPU_SET(0, &set); CPU_SET(1, &set); for (int i = 0; i < CPU_SETSIZE; i++) { ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set)); } CPU_CLR(1, &set); for (int i = 0; i < CPU_SETSIZE; i++) { ASSERT_EQ(i == 0, CPU_ISSET(i, &set)); } // We should fail silently if we try to clear/test outside the range. CPU_CLR(CPU_SETSIZE, &set); ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set)); } TEST(sched, cpu_equal) { cpu_set_t set1; cpu_set_t set2; CPU_ZERO(&set1); CPU_ZERO(&set2); CPU_SET(1, &set1); ASSERT_FALSE(CPU_EQUAL(&set1, &set2)); CPU_SET(1, &set2); ASSERT_TRUE(CPU_EQUAL(&set1, &set2)); } TEST(sched, cpu_op) { cpu_set_t set1; cpu_set_t set2; cpu_set_t set3; CPU_ZERO(&set1); CPU_ZERO(&set2); CPU_ZERO(&set3); CPU_SET(0, &set1); CPU_SET(0, &set2); CPU_SET(1, &set2); CPU_AND(&set3, &set1, &set2); for (int i = 0; i < CPU_SETSIZE; i++) { ASSERT_EQ(i == 0, CPU_ISSET(i, &set3)); } CPU_XOR(&set3, &set1, &set2); for (int i = 0; i < CPU_SETSIZE; i++) { ASSERT_EQ(i == 1, CPU_ISSET(i, &set3)); } CPU_OR(&set3, &set1, &set2); for (int i = 0; i < CPU_SETSIZE; i++) { ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set3)); } } TEST(sched, cpu_alloc_small) { cpu_set_t* set = CPU_ALLOC(17); size_t size = CPU_ALLOC_SIZE(17); CPU_ZERO_S(size, set); ASSERT_EQ(0, CPU_COUNT_S(size, set)); CPU_SET_S(16, size, set); ASSERT_TRUE(CPU_ISSET_S(16, size, set)); CPU_FREE(set); } TEST(sched, cpu_alloc_big) { cpu_set_t* set = CPU_ALLOC(10 * CPU_SETSIZE); size_t size = CPU_ALLOC_SIZE(10 * CPU_SETSIZE); CPU_ZERO_S(size, set); ASSERT_EQ(0, CPU_COUNT_S(size, set)); CPU_SET_S(CPU_SETSIZE, size, set); ASSERT_TRUE(CPU_ISSET_S(CPU_SETSIZE, size, set)); CPU_FREE(set); } TEST(sched, cpu_s_macros) { int set_size = 64; size_t size = CPU_ALLOC_SIZE(set_size); cpu_set_t* set = CPU_ALLOC(set_size); CPU_ZERO_S(size, set); for (int i = 0; i < set_size; i++) { ASSERT_FALSE(CPU_ISSET_S(i, size, set)); CPU_SET_S(i, size, set); ASSERT_TRUE(CPU_ISSET_S(i, size, set)); ASSERT_EQ(i + 1, CPU_COUNT_S(size, set)); } for (int i = 0; i < set_size; i++) { CPU_CLR_S(i, size, set); ASSERT_FALSE(CPU_ISSET_S(i, size, set)); ASSERT_EQ(set_size - i - 1, CPU_COUNT_S(size, set)); } CPU_FREE(set); } TEST(sched, cpu_op_s_macros) { int set_size1 = 64; int set_size2 = set_size1 * 2; int set_size3 = set_size1 * 3; size_t size1 = CPU_ALLOC_SIZE(set_size1); size_t size2 = CPU_ALLOC_SIZE(set_size2); size_t size3 = CPU_ALLOC_SIZE(set_size3); cpu_set_t* set1 = CPU_ALLOC(set_size1); cpu_set_t* set2 = CPU_ALLOC(set_size2); cpu_set_t* set3 = CPU_ALLOC(set_size3); CPU_ZERO_S(size1, set1); CPU_ZERO_S(size2, set2); CPU_ZERO_S(size3, set3); CPU_SET_S(0, size1, set1); CPU_SET_S(0, size2, set2); CPU_SET_S(1, size3, set2); CPU_AND_S(size1, set3, set1, set2); for (int i = 0; i < set_size3; i++) { ASSERT_EQ(i == 0, CPU_ISSET_S(i, size3, set3)); } CPU_OR_S(size1, set3, set1, set2); for (int i = 0; i < set_size3; i++) { ASSERT_EQ(i == 0 || i == 1, CPU_ISSET_S(i, size3, set3)); } CPU_XOR_S(size1, set3, set1, set2); for (int i = 0; i < set_size3; i++) { ASSERT_EQ(i == 1, CPU_ISSET_S(i, size3, set3)); } CPU_FREE(set1); CPU_FREE(set2); CPU_FREE(set3); } TEST(sched, cpu_equal_s) { int set_size1 = 64; int set_size2 = set_size1 * 2; size_t size1 = CPU_ALLOC_SIZE(set_size1); size_t size2 = CPU_ALLOC_SIZE(set_size2); cpu_set_t* set1 = CPU_ALLOC(set_size1); cpu_set_t* set2 = CPU_ALLOC(set_size2); CPU_ZERO_S(size1, set1); CPU_ZERO_S(size2, set2); CPU_SET_S(0, size1, set1); ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set1)); ASSERT_FALSE(CPU_EQUAL_S(size1, set1, set2)); CPU_SET_S(0, size2, set2); ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set2)); CPU_FREE(set1); CPU_FREE(set2); } TEST(sched, sched_get_priority_min_sched_get_priority_max) { EXPECT_LE(sched_get_priority_min(SCHED_BATCH), sched_get_priority_max(SCHED_BATCH)); EXPECT_LE(sched_get_priority_min(SCHED_FIFO), sched_get_priority_max(SCHED_FIFO)); EXPECT_LE(sched_get_priority_min(SCHED_IDLE), sched_get_priority_max(SCHED_IDLE)); EXPECT_LE(sched_get_priority_min(SCHED_OTHER), sched_get_priority_max(SCHED_OTHER)); EXPECT_LE(sched_get_priority_min(SCHED_RR), sched_get_priority_max(SCHED_RR)); } TEST(sched, sched_getscheduler_sched_setscheduler) { // POSIX: "If pid is zero, the scheduling policy shall be returned for the // calling process". ASSERT_EQ(sched_getscheduler(getpid()), sched_getscheduler(0)); const int original_policy = sched_getscheduler(getpid()); sched_param p = {}; p.sched_priority = sched_get_priority_min(original_policy); errno = 0; ASSERT_EQ(-1, sched_setscheduler(getpid(), INT_MAX, &p)); ASSERT_EQ(EINVAL, errno); ASSERT_EQ(0, sched_getparam(getpid(), &p)); ASSERT_EQ(original_policy, sched_setscheduler(getpid(), SCHED_BATCH, &p)); // POSIX says this should return the previous policy (here SCHED_BATCH), // but the Linux system call doesn't, and the glibc wrapper doesn't correct // this (the "returns 0" behavior is even documented on the man page in // the BUGS section). This was our historical behavior too, so in the // absence of reasons to break compatibility with ourselves and glibc, we // don't behave as POSIX specifies. http://b/26203902. ASSERT_EQ(0, sched_setscheduler(getpid(), original_policy, &p)); } TEST(sched, sched_getaffinity_failure) { #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wnonnull" ASSERT_EQ(-1, sched_getaffinity(getpid(), 0, nullptr)); #pragma clang diagnostic pop }