/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include static int int_cmp(const void* lhs, const void* rhs) { return *reinterpret_cast(rhs) - *reinterpret_cast(lhs); } TEST(search, lfind_lsearch) { int xs[10]; memset(xs, 0, sizeof(xs)); size_t x_size = 0; int needle; // lfind(3) can't find '2' in the empty table. needle = 2; ASSERT_EQ(nullptr, lfind(&needle, xs, &x_size, sizeof(xs[0]), int_cmp)); ASSERT_EQ(0U, x_size); // lsearch(3) will add it. ASSERT_EQ(&xs[0], lsearch(&needle, xs, &x_size, sizeof(xs[0]), int_cmp)); ASSERT_EQ(2, xs[0]); ASSERT_EQ(1U, x_size); // And then lfind(3) can find it. ASSERT_EQ(&xs[0], lfind(&needle, xs, &x_size, sizeof(xs[0]), int_cmp)); ASSERT_EQ(1U, x_size); // Inserting a duplicate does nothing (but returns the existing element). ASSERT_EQ(&xs[0], lsearch(&needle, xs, &x_size, sizeof(xs[0]), int_cmp)); ASSERT_EQ(1U, x_size); } struct node { explicit node(const char* s) : s(strdup(s)) {} char* s; }; static int node_cmp(const void* lhs, const void* rhs) { return strcmp(reinterpret_cast(lhs)->s, reinterpret_cast(rhs)->s); } static std::vector g_nodes; static void node_walk(const void* p, VISIT order, int) { const node* n = *reinterpret_cast(p); if (order == postorder || order == leaf) { g_nodes.push_back(n->s); } } static size_t g_free_calls; static void node_free(void* p) { node* n = reinterpret_cast(p); free(n->s); ++g_free_calls; } TEST(search, tfind_tsearch_twalk_tdestroy) { void* root = nullptr; node n1("z"); node n2("a"); node n3("m"); // tfind(3) can't find anything in the empty tree. ASSERT_EQ(nullptr, tfind(&n1, &root, node_cmp)); ASSERT_EQ(nullptr, tfind(&n2, &root, node_cmp)); ASSERT_EQ(nullptr, tfind(&n3, &root, node_cmp)); // tsearch(3) inserts and returns a pointer to a new node. void* i1 = tsearch(&n1, &root, node_cmp); ASSERT_NE(nullptr, i1); // ...which tfind(3) will then return. ASSERT_EQ(i1, tfind(&n1, &root, node_cmp)); ASSERT_EQ(nullptr, tfind(&n2, &root, node_cmp)); ASSERT_EQ(nullptr, tfind(&n3, &root, node_cmp)); // Add the other nodes. ASSERT_NE(nullptr, tsearch(&n2, &root, node_cmp)); ASSERT_NE(nullptr, tsearch(&n3, &root, node_cmp)); // Use twalk(3) to iterate over the nodes. g_nodes.clear(); twalk(root, node_walk); ASSERT_EQ(3U, g_nodes.size()); ASSERT_EQ("a", g_nodes[0]); ASSERT_EQ("m", g_nodes[1]); ASSERT_EQ("z", g_nodes[2]); // tdestroy(3) removes nodes under a node, calling our callback to destroy each one. g_free_calls = 0; tdestroy(root, node_free); ASSERT_EQ(3U, g_free_calls); } TEST(search, tdestroy_null) { // It's okay to pass a null node, and your callback will not be called. tdestroy(nullptr, nullptr); } struct pod_node { explicit pod_node(int i) : i(i) {} int i; }; static int pod_node_cmp(const void* lhs, const void* rhs) { return reinterpret_cast(rhs)->i - reinterpret_cast(lhs)->i; } TEST(search, tdelete) { void* root = nullptr; pod_node n1(123); ASSERT_NE(nullptr, tsearch(&n1, &root, pod_node_cmp)); // tdelete(3) leaks n1. pod_node not_there(456); ASSERT_EQ(nullptr, tdelete(¬_there, &root, pod_node_cmp)); ASSERT_NE(nullptr, tdelete(&n1, &root, pod_node_cmp)); } struct q_node { explicit q_node(int i) : i(i) {} q_node* next; q_node* prev; int i; }; TEST(search, insque_remque) { q_node zero(0); q_node one(1); q_node two(2); // Linear (not circular). insque(&zero, nullptr); insque(&one, &zero); insque(&two, &one); int expected = 0; for (q_node* q = &zero; q != nullptr; q = q->next) { ASSERT_EQ(expected, q->i); ++expected; } ASSERT_EQ(3, expected); for (q_node* q = &two; q != nullptr; q = q->prev) { --expected; ASSERT_EQ(expected, q->i); } ASSERT_EQ(0, expected); q_node* head = &zero; remque(&one); ASSERT_EQ(0, head->i); ASSERT_EQ(2, head->next->i); ASSERT_EQ(nullptr, head->next->next); remque(&two); ASSERT_EQ(0, head->i); ASSERT_EQ(nullptr, head->next); remque(&zero); // Circular. zero.next = &zero; zero.prev = &zero; insque(&one, &zero); insque(&two, &one); ASSERT_EQ(0, head->i); ASSERT_EQ(1, head->next->i); ASSERT_EQ(2, head->next->next->i); ASSERT_EQ(0, head->next->next->next->i); ASSERT_EQ(1, head->next->next->next->next->i); ASSERT_EQ(2, head->next->next->next->next->next->i); remque(&one); ASSERT_EQ(0, head->i); ASSERT_EQ(2, head->next->i); ASSERT_EQ(0, head->next->next->i); ASSERT_EQ(2, head->next->next->next->i); remque(&two); ASSERT_EQ(0, head->i); ASSERT_EQ(0, head->next->i); remque(&zero); } static void AssertEntry(ENTRY* e, const char* expected_key, const char* expected_data) { ASSERT_TRUE(e != nullptr); ASSERT_STREQ(expected_key, reinterpret_cast(e->key)); ASSERT_STREQ(expected_data, reinterpret_cast(e->data)); } TEST(search, hcreate_hsearch_hdestroy) { ASSERT_NE(0, hcreate(13)); // Add some initial entries. ENTRY* e; e = hsearch(ENTRY{.key = const_cast("a"), .data = const_cast("A")}, ENTER); AssertEntry(e, "a", "A"); e = hsearch(ENTRY{.key = const_cast("aa"), .data = const_cast("B")}, ENTER); AssertEntry(e, "aa", "B"); e = hsearch(ENTRY{.key = const_cast("aaa"), .data = const_cast("C")}, ENTER); AssertEntry(e, "aaa", "C"); // Check missing. e = hsearch(ENTRY{.key = const_cast("aaaa"), .data = nullptr}, FIND); ASSERT_FALSE(e != nullptr); // Check present. e = hsearch(ENTRY{.key = const_cast("aa"), .data = nullptr}, FIND); AssertEntry(e, "aa", "B"); // ENTER with an existing key just returns the existing ENTRY. e = hsearch(ENTRY{.key = const_cast("aa"), .data = const_cast("X")}, ENTER); AssertEntry(e, "aa", "B"); e->data = const_cast("X"); // Check present and updated. e = hsearch(ENTRY{.key = const_cast("aa"), .data = nullptr}, FIND); AssertEntry(e, "aa", "X"); // But other entries stayed the same. e = hsearch(ENTRY{.key = const_cast("a"), .data = nullptr}, FIND); AssertEntry(e, "a", "A"); e = hsearch(ENTRY{.key = const_cast("aaa"), .data = nullptr}, FIND); AssertEntry(e, "aaa", "C"); hdestroy(); } TEST(search, hcreate_r_hsearch_r_hdestroy_r) { hsearch_data h1 = {}; ASSERT_EQ(1, hcreate_r(13, &h1)); hsearch_data h2 = {}; ASSERT_EQ(1, hcreate_r(128, &h2)); // Add some initial entries. ENTRY* e; ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast("a"), .data = const_cast("A")}, ENTER, &e, &h1)); AssertEntry(e, "a", "A"); ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast("a"), .data = const_cast("B")}, ENTER, &e, &h2)); AssertEntry(e, "a", "B"); // Check missing. errno = 0; ASSERT_EQ(0, hsearch_r(ENTRY{.key = const_cast("b"), .data = nullptr}, FIND, &e, &h1)); ASSERT_EQ(ESRCH, errno); // Check present. ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast("a"), .data = nullptr}, FIND, &e, &h1)); AssertEntry(e, "a", "A"); ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast("a"), .data = nullptr}, FIND, &e, &h2)); AssertEntry(e, "a", "B"); // Destroying one doesn't affect the other. hdestroy_r(&h1); ASSERT_EQ(1, hsearch_r(ENTRY{.key = const_cast("a"), .data = nullptr}, FIND, &e, &h2)); AssertEntry(e, "a", "B"); hdestroy_r(&h2); } TEST(search, hsearch_resizing) { ASSERT_NE(0, hcreate(1)); std::vector entries; // Add enough entries to ensure that we've had to resize. for (char ch = ' '; ch <= '~'; ++ch) { char* p; asprintf(&p, "%c", ch); ENTRY e; e.data = e.key = p; ASSERT_TRUE(hsearch(e, ENTER) != nullptr); entries.push_back(p); } // Check they're all there. for (auto& p : entries) { ENTRY* e = hsearch(ENTRY{.key = p, .data = nullptr}, FIND); AssertEntry(e, p, p); } for (auto& p : entries) free(p); }