/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "SignalUtils.h" using setjmp_DeathTest = SilentDeathTest; TEST(setjmp, setjmp_smoke) { int value; jmp_buf jb; if ((value = setjmp(jb)) == 0) { longjmp(jb, 123); FAIL(); // Unreachable. } else { ASSERT_EQ(123, value); } } TEST(setjmp, _setjmp_smoke) { int value; jmp_buf jb; if ((value = _setjmp(jb)) == 0) { _longjmp(jb, 456); FAIL(); // Unreachable. } else { ASSERT_EQ(456, value); } } TEST(setjmp, sigsetjmp_0_smoke) { int value; sigjmp_buf jb; if ((value = sigsetjmp(jb, 0)) == 0) { siglongjmp(jb, 789); FAIL(); // Unreachable. } else { ASSERT_EQ(789, value); } } TEST(setjmp, sigsetjmp_1_smoke) { int value; sigjmp_buf jb; if ((value = sigsetjmp(jb, 0)) == 0) { siglongjmp(jb, 0xabc); FAIL(); // Unreachable. } else { ASSERT_EQ(0xabc, value); } } // Two distinct signal sets. struct SigSets { SigSets() : one(MakeSigSet(0)), two(MakeSigSet(1)) { } static sigset64_t MakeSigSet(int offset) { sigset64_t ss; sigemptyset64(&ss); sigaddset64(&ss, SIGUSR1 + offset); #if defined(__BIONIC__) // TIMER_SIGNAL. sigaddset64(&ss, __SIGRTMIN); #endif sigaddset64(&ss, SIGRTMIN + offset); return ss; } sigset64_t one; sigset64_t two; }; void AssertSigmaskEquals(const sigset64_t& expected) { sigset64_t actual; sigprocmask64(SIG_SETMASK, nullptr, &actual); size_t end = sizeof(expected) * 8; for (size_t i = 1; i <= end; ++i) { EXPECT_EQ(sigismember64(&expected, i), sigismember64(&actual, i)) << i; } } TEST(setjmp, _setjmp_signal_mask) { SignalMaskRestorer smr; // _setjmp/_longjmp do not save/restore the signal mask. SigSets ss; sigprocmask64(SIG_SETMASK, &ss.one, nullptr); jmp_buf jb; if (_setjmp(jb) == 0) { sigprocmask64(SIG_SETMASK, &ss.two, nullptr); _longjmp(jb, 1); FAIL(); // Unreachable. } else { AssertSigmaskEquals(ss.two); } } TEST(setjmp, setjmp_signal_mask) { SignalMaskRestorer smr; // setjmp/longjmp do save/restore the signal mask on bionic, but not on glibc. // This is a BSD versus System V historical accident. POSIX leaves the // behavior unspecified, so any code that cares needs to use sigsetjmp. SigSets ss; sigprocmask64(SIG_SETMASK, &ss.one, nullptr); jmp_buf jb; if (setjmp(jb) == 0) { sigprocmask64(SIG_SETMASK, &ss.two, nullptr); longjmp(jb, 1); FAIL(); // Unreachable. } else { #if defined(__BIONIC__) // bionic behaves like BSD and does save/restore the signal mask. AssertSigmaskEquals(ss.one); #else // glibc behaves like System V and doesn't save/restore the signal mask. AssertSigmaskEquals(ss.two); #endif } } TEST(setjmp, sigsetjmp_0_signal_mask) { SignalMaskRestorer smr; // sigsetjmp(0)/siglongjmp do not save/restore the signal mask. SigSets ss; sigprocmask64(SIG_SETMASK, &ss.one, nullptr); sigjmp_buf sjb; if (sigsetjmp(sjb, 0) == 0) { sigprocmask64(SIG_SETMASK, &ss.two, nullptr); siglongjmp(sjb, 1); FAIL(); // Unreachable. } else { AssertSigmaskEquals(ss.two); } } TEST(setjmp, sigsetjmp_1_signal_mask) { SignalMaskRestorer smr; // sigsetjmp(1)/siglongjmp does save/restore the signal mask. SigSets ss; sigprocmask64(SIG_SETMASK, &ss.one, nullptr); sigjmp_buf sjb; if (sigsetjmp(sjb, 1) == 0) { sigprocmask64(SIG_SETMASK, &ss.two, nullptr); siglongjmp(sjb, 1); FAIL(); // Unreachable. } else { AssertSigmaskEquals(ss.one); } } #if defined(__arm__) || defined(__aarch64__) // arm and arm64 have the same callee save fp registers (8-15), // but use different instructions for accessing them. #if defined(__arm__) #define SET_FREG(n, v) asm volatile("vmov.f64 d"#n ", #"#v : : : "d"#n) #define GET_FREG(n) ({ double _r; asm volatile("fcpyd %P0, d"#n : "=w"(_r) : :); _r;}) #define CLEAR_FREG(n) asm volatile("vmov.i64 d"#n ", #0x0" : : : "d"#n) #elif defined(__aarch64__) #define SET_FREG(n, v) asm volatile("fmov d"#n ", "#v : : : "d"#n) #define GET_FREG(n) ({ double _r; asm volatile("fmov %0, d"#n : "=r"(_r) : :); _r; }) #define CLEAR_FREG(n) asm volatile("fmov d"#n ", xzr" : : : "d"#n) #endif #define SET_FREGS \ SET_FREG(8, 8.0); SET_FREG(9, 9.0); SET_FREG(10, 10.0); SET_FREG(11, 11.0); \ SET_FREG(12, 12.0); SET_FREG(13, 13.0); SET_FREG(14, 14.0); SET_FREG(15, 15.0) #define CLEAR_FREGS \ CLEAR_FREG(8); CLEAR_FREG(9); CLEAR_FREG(10); CLEAR_FREG(11); \ CLEAR_FREG(12); CLEAR_FREG(13); CLEAR_FREG(14); CLEAR_FREG(15) #define CHECK_FREGS \ EXPECT_EQ(8.0, GET_FREG(8)); EXPECT_EQ(9.0, GET_FREG(9)); \ EXPECT_EQ(10.0, GET_FREG(10)); EXPECT_EQ(11.0, GET_FREG(11)); \ EXPECT_EQ(12.0, GET_FREG(12)); EXPECT_EQ(13.0, GET_FREG(13)); \ EXPECT_EQ(14.0, GET_FREG(14)); EXPECT_EQ(15.0, GET_FREG(15)) #elif defined(__riscv) // riscv64 has callee save registers fs0-fs11. // TODO: use Zfa to get 1.0 rather than the one_p trick. #define SET_FREGS \ double one = 1, *one_p = &one; \ asm volatile("fmv.d.x fs0, zero ; fld fs1, (%0) ; \ fadd.d fs2, fs1, fs1 ; fadd.d fs3, fs2, fs1 ; \ fadd.d fs4, fs3, fs1 ; fadd.d fs5, fs4, fs1 ; \ fadd.d fs6, fs5, fs1 ; fadd.d fs7, fs6, fs1 ; \ fadd.d fs8, fs7, fs1 ; fadd.d fs9, fs8, fs1 ; \ fadd.d fs10, fs9, fs1 ; fadd.d fs11, fs10, fs1" \ : \ : "r"(one_p) \ : "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", \ "fs6", "fs7", "fs8", "fs9", "fs10", "fs11") #define CLEAR_FREGS \ asm volatile("fmv.d.x fs0, zero ; fmv.d.x fs1, zero ; \ fmv.d.x fs2, zero ; fmv.d.x fs3, zero ; \ fmv.d.x fs4, zero ; fmv.d.x fs5, zero ; \ fmv.d.x fs6, zero ; fmv.d.x fs7, zero ; \ fmv.d.x fs8, zero ; fmv.d.x fs9, zero ; \ fmv.d.x fs10, zero ; fmv.d.x fs11, zero" \ : : : "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", \ "fs6", "fs7", "fs8", "fs9", "fs10", "fs11") #define GET_FREG(n) ({ double _r; asm volatile("fmv.d %0, fs"#n : "=f"(_r) : :); _r; }) #define CHECK_FREGS \ EXPECT_EQ(0.0, GET_FREG(0)); EXPECT_EQ(1.0, GET_FREG(1)); \ EXPECT_EQ(2.0, GET_FREG(2)); EXPECT_EQ(3.0, GET_FREG(3)); \ EXPECT_EQ(4.0, GET_FREG(4)); EXPECT_EQ(5.0, GET_FREG(5)); \ EXPECT_EQ(6.0, GET_FREG(6)); EXPECT_EQ(7.0, GET_FREG(7)); \ EXPECT_EQ(8.0, GET_FREG(8)); EXPECT_EQ(9.0, GET_FREG(9)); \ EXPECT_EQ(10.0, GET_FREG(10)); EXPECT_EQ(11.0, GET_FREG(11)) #else // x86 and x86-64 don't save/restore fp registers. #define SET_FREGS #define CLEAR_FREGS #define CHECK_FREGS #endif TEST(setjmp, setjmp_fp_registers) { int value; jmp_buf jb; SET_FREGS; if ((value = setjmp(jb)) == 0) { CLEAR_FREGS; longjmp(jb, 123); FAIL(); // Unreachable. } else { ASSERT_EQ(123, value); CHECK_FREGS; } } #if defined(__arm__) #define JB_SIGFLAG_OFFSET 0 #elif defined(__aarch64__) #define JB_SIGFLAG_OFFSET 0 #elif defined(__i386__) #define JB_SIGFLAG_OFFSET 8 #elif defined(__riscv) #define JB_SIGFLAG_OFFSET 0 #elif defined(__x86_64) #define JB_SIGFLAG_OFFSET 8 #endif TEST_F(setjmp_DeathTest, setjmp_cookie) { jmp_buf jb; int value = setjmp(jb); ASSERT_EQ(0, value); long* sigflag = reinterpret_cast(jb) + JB_SIGFLAG_OFFSET; // Make sure there's actually a cookie. EXPECT_NE(0, *sigflag & ~1); // Wipe it out *sigflag &= 1; EXPECT_DEATH(longjmp(jb, 0), ""); } TEST_F(setjmp_DeathTest, setjmp_cookie_checksum) { jmp_buf jb; int value = setjmp(jb); if (value == 0) { // Flip a bit. reinterpret_cast(jb)[1] ^= 1; EXPECT_DEATH(longjmp(jb, 1), "checksum mismatch"); } else { fprintf(stderr, "setjmp_cookie_checksum: longjmp succeeded?"); } } __attribute__((noinline)) void call_longjmp(jmp_buf buf) { longjmp(buf, 123); } TEST(setjmp, setjmp_stack) { jmp_buf buf; int value = setjmp(buf); if (value == 0) call_longjmp(buf); EXPECT_EQ(123, value); } TEST(setjmp, bug_152210274) { // Ensure that we never have a mangled value in the stack pointer. #if defined(__BIONIC__) struct sigaction sa = {.sa_flags = SA_SIGINFO, .sa_sigaction = [](int, siginfo_t*, void*) {}}; ASSERT_EQ(0, sigaction(SIGPROF, &sa, 0)); constexpr size_t kNumThreads = 20; // Start a bunch of threads calling setjmp/longjmp. auto jumper = [](void* arg) -> void* { sigset_t set; sigemptyset(&set); sigaddset(&set, SIGPROF); pthread_sigmask(SIG_UNBLOCK, &set, nullptr); jmp_buf buf; for (size_t count = 0; count < 100000; ++count) { if (setjmp(buf) != 0) { perror("setjmp"); abort(); } // This will never be true, but the compiler doesn't know that, so the // setjmp won't be removed by DCE. With HWASan/MTE this also acts as a // kind of enforcement that the threads are done before leaving the test. if (*static_cast(arg) != 123) longjmp(buf, 1); } return nullptr; }; pthread_t threads[kNumThreads]; pid_t tids[kNumThreads] = {}; size_t var = 123; for (size_t i = 0; i < kNumThreads; ++i) { ASSERT_EQ(0, pthread_create(&threads[i], nullptr, jumper, &var)); tids[i] = pthread_gettid_np(threads[i]); } // Start the interrupter thread. auto interrupter = [](void* arg) -> void* { pid_t* tids = static_cast(arg); for (size_t count = 0; count < 1000; ++count) { for (size_t i = 0; i < kNumThreads; i++) { if (tgkill(getpid(), tids[i], SIGPROF) == -1 && errno != ESRCH) { perror("tgkill failed"); abort(); } } usleep(100); } return nullptr; }; pthread_t t; ASSERT_EQ(0, pthread_create(&t, nullptr, interrupter, tids)); pthread_join(t, nullptr); for (size_t i = 0; i < kNumThreads; i++) { pthread_join(threads[i], nullptr); } #else GTEST_SKIP() << "tests uses functions not in glibc"; #endif }