/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "private/bionic_config.h" #include "utils.h" #if defined(__BIONIC__) #define HAVE_REALLOCARRAY 1 #else #define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26) #endif TEST(malloc, malloc_std) { // Simple malloc test. void *ptr = malloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); free(ptr); } TEST(malloc, malloc_overflow) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, malloc(SIZE_MAX)); ASSERT_EQ(ENOMEM, errno); } TEST(malloc, calloc_std) { // Simple calloc test. size_t alloc_len = 100; char *ptr = (char *)calloc(1, alloc_len); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(alloc_len, malloc_usable_size(ptr)); for (size_t i = 0; i < alloc_len; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, calloc_illegal) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, calloc(-1, 100)); ASSERT_EQ(ENOMEM, errno); } TEST(malloc, calloc_overflow) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, calloc(1, SIZE_MAX)); ASSERT_EQ(ENOMEM, errno); errno = 0; ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX)); ASSERT_EQ(ENOMEM, errno); errno = 0; ASSERT_EQ(nullptr, calloc(2, SIZE_MAX)); ASSERT_EQ(ENOMEM, errno); errno = 0; ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2)); ASSERT_EQ(ENOMEM, errno); } TEST(malloc, memalign_multiple) { SKIP_WITH_HWASAN; // hwasan requires power of 2 alignment. // Memalign test where the alignment is any value. for (size_t i = 0; i <= 12; i++) { for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) { char *ptr = reinterpret_cast(memalign(alignment, 100)); ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment; ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment; ASSERT_EQ(0U, reinterpret_cast(ptr) % ((1U << i))) << "Failed at alignment " << alignment; free(ptr); } } } TEST(malloc, memalign_overflow) { SKIP_WITH_HWASAN; ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX)); } TEST(malloc, memalign_non_power2) { SKIP_WITH_HWASAN; void* ptr; for (size_t align = 0; align <= 256; align++) { ptr = memalign(align, 1024); ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align; free(ptr); } } TEST(malloc, memalign_realloc) { // Memalign and then realloc the pointer a couple of times. for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) { char *ptr = (char*)memalign(alignment, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); ASSERT_EQ(0U, (intptr_t)ptr % alignment); memset(ptr, 0x23, 100); ptr = (char*)realloc(ptr, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); ASSERT_TRUE(ptr != nullptr); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0x23, ptr[i]); } memset(ptr, 0x45, 200); ptr = (char*)realloc(ptr, 300); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(300U, malloc_usable_size(ptr)); for (size_t i = 0; i < 200; i++) { ASSERT_EQ(0x45, ptr[i]); } memset(ptr, 0x67, 300); ptr = (char*)realloc(ptr, 250); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(250U, malloc_usable_size(ptr)); for (size_t i = 0; i < 250; i++) { ASSERT_EQ(0x67, ptr[i]); } free(ptr); } } TEST(malloc, malloc_realloc_larger) { // Realloc to a larger size, malloc is used for the original allocation. char *ptr = (char *)malloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); memset(ptr, 67, 100); ptr = (char *)realloc(ptr, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(67, ptr[i]); } free(ptr); } TEST(malloc, malloc_realloc_smaller) { // Realloc to a smaller size, malloc is used for the original allocation. char *ptr = (char *)malloc(200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); memset(ptr, 67, 200); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(67, ptr[i]); } free(ptr); } TEST(malloc, malloc_multiple_realloc) { // Multiple reallocs, malloc is used for the original allocation. char *ptr = (char *)malloc(200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); memset(ptr, 0x23, 200); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0x23, ptr[i]); } ptr = (char*)realloc(ptr, 50); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(50U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0x23, ptr[i]); } ptr = (char*)realloc(ptr, 150); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(150U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0x23, ptr[i]); } memset(ptr, 0x23, 150); ptr = (char*)realloc(ptr, 425); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(425U, malloc_usable_size(ptr)); for (size_t i = 0; i < 150; i++) { ASSERT_EQ(0x23, ptr[i]); } free(ptr); } TEST(malloc, calloc_realloc_larger) { // Realloc to a larger size, calloc is used for the original allocation. char *ptr = (char *)calloc(1, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); ptr = (char *)realloc(ptr, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, calloc_realloc_smaller) { // Realloc to a smaller size, calloc is used for the original allocation. char *ptr = (char *)calloc(1, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, calloc_multiple_realloc) { // Multiple reallocs, calloc is used for the original allocation. char *ptr = (char *)calloc(1, 200); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(200U, malloc_usable_size(ptr)); ptr = (char *)realloc(ptr, 100); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(100U, malloc_usable_size(ptr)); for (size_t i = 0; i < 100; i++) { ASSERT_EQ(0, ptr[i]); } ptr = (char*)realloc(ptr, 50); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(50U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0, ptr[i]); } ptr = (char*)realloc(ptr, 150); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(150U, malloc_usable_size(ptr)); for (size_t i = 0; i < 50; i++) { ASSERT_EQ(0, ptr[i]); } memset(ptr, 0, 150); ptr = (char*)realloc(ptr, 425); ASSERT_TRUE(ptr != nullptr); ASSERT_LE(425U, malloc_usable_size(ptr)); for (size_t i = 0; i < 150; i++) { ASSERT_EQ(0, ptr[i]); } free(ptr); } TEST(malloc, realloc_overflow) { SKIP_WITH_HWASAN; errno = 0; ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX)); ASSERT_EQ(ENOMEM, errno); void* ptr = malloc(100); ASSERT_TRUE(ptr != nullptr); errno = 0; ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX)); ASSERT_EQ(ENOMEM, errno); free(ptr); } #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) extern "C" void* pvalloc(size_t); extern "C" void* valloc(size_t); TEST(malloc, pvalloc_std) { size_t pagesize = sysconf(_SC_PAGESIZE); void* ptr = pvalloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_TRUE((reinterpret_cast(ptr) & (pagesize-1)) == 0); ASSERT_LE(pagesize, malloc_usable_size(ptr)); free(ptr); } TEST(malloc, pvalloc_overflow) { ASSERT_EQ(nullptr, pvalloc(SIZE_MAX)); } TEST(malloc, valloc_std) { size_t pagesize = sysconf(_SC_PAGESIZE); void* ptr = pvalloc(100); ASSERT_TRUE(ptr != nullptr); ASSERT_TRUE((reinterpret_cast(ptr) & (pagesize-1)) == 0); free(ptr); } TEST(malloc, valloc_overflow) { ASSERT_EQ(nullptr, valloc(SIZE_MAX)); } #endif TEST(malloc, malloc_info) { #ifdef __BIONIC__ char* buf; size_t bufsize; FILE* memstream = open_memstream(&buf, &bufsize); ASSERT_NE(nullptr, memstream); ASSERT_EQ(0, malloc_info(0, memstream)); ASSERT_EQ(0, fclose(memstream)); tinyxml2::XMLDocument doc; ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(buf)); auto root = doc.FirstChildElement(); ASSERT_NE(nullptr, root); ASSERT_STREQ("malloc", root->Name()); ASSERT_STREQ("jemalloc-1", root->Attribute("version")); auto arena = root->FirstChildElement(); for (; arena != nullptr; arena = arena->NextSiblingElement()) { int val; ASSERT_STREQ("heap", arena->Name()); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-large")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-huge")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("allocated-bins")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->FirstChildElement("bins-total")->QueryIntText(&val)); auto bin = arena->FirstChildElement("bin"); for (; bin != nullptr; bin = bin ->NextSiblingElement()) { if (strcmp(bin->Name(), "bin") == 0) { ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->FirstChildElement("allocated")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->FirstChildElement("nmalloc")->QueryIntText(&val)); ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->FirstChildElement("ndalloc")->QueryIntText(&val)); } } } #endif } TEST(malloc, calloc_usable_size) { for (size_t size = 1; size <= 2048; size++) { void* pointer = malloc(size); ASSERT_TRUE(pointer != nullptr); memset(pointer, 0xeb, malloc_usable_size(pointer)); free(pointer); // We should get a previous pointer that has been set to non-zero. // If calloc does not zero out all of the data, this will fail. uint8_t* zero_mem = reinterpret_cast(calloc(1, size)); ASSERT_TRUE(pointer != nullptr); size_t usable_size = malloc_usable_size(zero_mem); for (size_t i = 0; i < usable_size; i++) { ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i; } free(zero_mem); } } TEST(malloc, malloc_0) { void* p = malloc(0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, calloc_0_0) { void* p = calloc(0, 0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, calloc_0_1) { void* p = calloc(0, 1); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, calloc_1_0) { void* p = calloc(1, 0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, realloc_nullptr_0) { // realloc(nullptr, size) is actually malloc(size). void* p = realloc(nullptr, 0); ASSERT_TRUE(p != nullptr); free(p); } TEST(malloc, realloc_0) { void* p = malloc(1024); ASSERT_TRUE(p != nullptr); // realloc(p, 0) is actually free(p). void* p2 = realloc(p, 0); ASSERT_TRUE(p2 == nullptr); } constexpr size_t MAX_LOOPS = 200; // Make sure that memory returned by malloc is aligned to allow these data types. TEST(malloc, verify_alignment) { uint32_t** values_32 = new uint32_t*[MAX_LOOPS]; uint64_t** values_64 = new uint64_t*[MAX_LOOPS]; long double** values_ldouble = new long double*[MAX_LOOPS]; // Use filler to attempt to force the allocator to get potentially bad alignments. void** filler = new void*[MAX_LOOPS]; for (size_t i = 0; i < MAX_LOOPS; i++) { // Check uint32_t pointers. filler[i] = malloc(1); ASSERT_TRUE(filler[i] != nullptr); values_32[i] = reinterpret_cast(malloc(sizeof(uint32_t))); ASSERT_TRUE(values_32[i] != nullptr); *values_32[i] = i; ASSERT_EQ(*values_32[i], i); ASSERT_EQ(0U, reinterpret_cast(values_32[i]) & (sizeof(uint32_t) - 1)); free(filler[i]); } for (size_t i = 0; i < MAX_LOOPS; i++) { // Check uint64_t pointers. filler[i] = malloc(1); ASSERT_TRUE(filler[i] != nullptr); values_64[i] = reinterpret_cast(malloc(sizeof(uint64_t))); ASSERT_TRUE(values_64[i] != nullptr); *values_64[i] = 0x1000 + i; ASSERT_EQ(*values_64[i], 0x1000 + i); ASSERT_EQ(0U, reinterpret_cast(values_64[i]) & (sizeof(uint64_t) - 1)); free(filler[i]); } for (size_t i = 0; i < MAX_LOOPS; i++) { // Check long double pointers. filler[i] = malloc(1); ASSERT_TRUE(filler[i] != nullptr); values_ldouble[i] = reinterpret_cast(malloc(sizeof(long double))); ASSERT_TRUE(values_ldouble[i] != nullptr); *values_ldouble[i] = 5.5 + i; ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i); // 32 bit glibc has a long double size of 12 bytes, so hardcode the // required alignment to 0x7. #if !defined(__BIONIC__) && !defined(__LP64__) ASSERT_EQ(0U, reinterpret_cast(values_ldouble[i]) & 0x7); #else ASSERT_EQ(0U, reinterpret_cast(values_ldouble[i]) & (sizeof(long double) - 1)); #endif free(filler[i]); } for (size_t i = 0; i < MAX_LOOPS; i++) { free(values_32[i]); free(values_64[i]); free(values_ldouble[i]); } delete[] filler; delete[] values_32; delete[] values_64; delete[] values_ldouble; } TEST(malloc, mallopt_smoke) { errno = 0; ASSERT_EQ(0, mallopt(-1000, 1)); // mallopt doesn't set errno. ASSERT_EQ(0, errno); } TEST(malloc, mallopt_decay) { #if defined(__BIONIC__) errno = 0; ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); #else GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n"; #endif } TEST(malloc, mallopt_purge) { #if defined(__BIONIC__) errno = 0; ASSERT_EQ(1, mallopt(M_PURGE, 0)); #else GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n"; #endif } TEST(malloc, reallocarray_overflow) { #if HAVE_REALLOCARRAY // Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed". size_t a = static_cast(INTPTR_MIN + 4); size_t b = 2; errno = 0; ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr); ASSERT_EQ(ENOMEM, errno); errno = 0; ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr); ASSERT_EQ(ENOMEM, errno); #else GTEST_LOG_(INFO) << "This test requires a C library with reallocarray.\n"; #endif } TEST(malloc, reallocarray) { #if HAVE_REALLOCARRAY void* p = reallocarray(nullptr, 2, 32); ASSERT_TRUE(p != nullptr); ASSERT_GE(malloc_usable_size(p), 64U); #else GTEST_LOG_(INFO) << "This test requires a C library with reallocarray.\n"; #endif }