/* * Copyright (C) 2020 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "atexit.h" #include #include #include #include #include #include #include #include #include #include #include "platform/bionic/page.h" extern "C" void __libc_stdio_cleanup(); extern "C" void __unregister_atfork(void* dso); namespace { struct AtexitEntry { void (*fn)(void*); // the __cxa_atexit callback void* arg; // argument for `fn` callback void* dso; // shared module handle }; class AtexitArray { public: size_t size() const { return size_; } uint64_t total_appends() const { return total_appends_; } const AtexitEntry& operator[](size_t idx) const { return array_[idx]; } bool append_entry(const AtexitEntry& entry); AtexitEntry extract_entry(size_t idx); void recompact(); private: AtexitEntry* array_; size_t size_; size_t extracted_count_; size_t capacity_; // An entry can be appended by a __cxa_finalize callback. Track the number of appends so we // restart concurrent __cxa_finalize passes. uint64_t total_appends_; static size_t page_start_of_index(size_t idx) { return PAGE_START(idx * sizeof(AtexitEntry)); } static size_t page_end_of_index(size_t idx) { return PAGE_END(idx * sizeof(AtexitEntry)); } // Recompact the array if it will save at least one page of memory at the end. bool needs_recompaction() const { return page_end_of_index(size_ - extracted_count_) < page_end_of_index(size_); } void set_writable(bool writable, size_t start_idx, size_t num_entries); static bool next_capacity(size_t capacity, size_t* result); bool expand_capacity(); }; } // anonymous namespace bool AtexitArray::append_entry(const AtexitEntry& entry) { if (size_ >= capacity_ && !expand_capacity()) return false; size_t idx = size_++; set_writable(true, idx, 1); array_[idx] = entry; ++total_appends_; set_writable(false, idx, 1); return true; } // Extract an entry and return it. AtexitEntry AtexitArray::extract_entry(size_t idx) { AtexitEntry result = array_[idx]; set_writable(true, idx, 1); array_[idx] = {}; ++extracted_count_; set_writable(false, idx, 1); return result; } void AtexitArray::recompact() { if (!needs_recompaction()) return; set_writable(true, 0, size_); // Optimization: quickly skip over the initial non-null entries. size_t src = 0, dst = 0; while (src < size_ && array_[src].fn != nullptr) { ++src; ++dst; } // Shift the non-null entries forward, and zero out the removed entries at the end of the array. for (; src < size_; ++src) { const AtexitEntry entry = array_[src]; array_[src] = {}; if (entry.fn != nullptr) { array_[dst++] = entry; } } // If the table uses fewer pages, clean the pages at the end. size_t old_bytes = page_end_of_index(size_); size_t new_bytes = page_end_of_index(dst); if (new_bytes < old_bytes) { madvise(reinterpret_cast(array_) + new_bytes, old_bytes - new_bytes, MADV_DONTNEED); } set_writable(false, 0, size_); size_ = dst; extracted_count_ = 0; } // Use mprotect to make the array writable or read-only. Returns true on success. Making the array // read-only could protect against either unintentional or malicious corruption of the array. void AtexitArray::set_writable(bool writable, size_t start_idx, size_t num_entries) { if (array_ == nullptr) return; const size_t start_byte = page_start_of_index(start_idx); const size_t stop_byte = page_end_of_index(start_idx + num_entries); const size_t byte_len = stop_byte - start_byte; const int prot = PROT_READ | (writable ? PROT_WRITE : 0); if (mprotect(reinterpret_cast(array_) + start_byte, byte_len, prot) != 0) { async_safe_fatal("mprotect failed on atexit array: %s", strerror(errno)); } } // Approximately double the capacity. Returns true if successful (no overflow). AtexitEntry is // smaller than a page, but this function should still be correct even if AtexitEntry were larger // than one. bool AtexitArray::next_capacity(size_t capacity, size_t* result) { if (capacity == 0) { *result = PAGE_END(sizeof(AtexitEntry)) / sizeof(AtexitEntry); return true; } size_t num_bytes; if (__builtin_mul_overflow(page_end_of_index(capacity), 2, &num_bytes)) { async_safe_format_log(ANDROID_LOG_WARN, "libc", "__cxa_atexit: capacity calculation overflow"); return false; } *result = num_bytes / sizeof(AtexitEntry); return true; } bool AtexitArray::expand_capacity() { size_t new_capacity; if (!next_capacity(capacity_, &new_capacity)) return false; const size_t new_capacity_bytes = page_end_of_index(new_capacity); set_writable(true, 0, capacity_); bool result = false; void* new_pages; if (array_ == nullptr) { new_pages = mmap(nullptr, new_capacity_bytes, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); } else { // mremap fails if the source buffer crosses a boundary between two VMAs. When a single array // element is modified, the kernel should split then rejoin the buffer's VMA. new_pages = mremap(array_, page_end_of_index(capacity_), new_capacity_bytes, MREMAP_MAYMOVE); } if (new_pages == MAP_FAILED) { async_safe_format_log(ANDROID_LOG_WARN, "libc", "__cxa_atexit: mmap/mremap failed to allocate %zu bytes: %s", new_capacity_bytes, strerror(errno)); } else { result = true; prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, new_pages, new_capacity_bytes, "atexit handlers"); array_ = static_cast(new_pages); capacity_ = new_capacity; } set_writable(false, 0, capacity_); return result; } static AtexitArray g_array; static pthread_mutex_t g_atexit_lock = PTHREAD_MUTEX_INITIALIZER; static inline void atexit_lock() { pthread_mutex_lock(&g_atexit_lock); } static inline void atexit_unlock() { pthread_mutex_unlock(&g_atexit_lock); } // Register a function to be called either when a library is unloaded (dso != nullptr), or when the // program exits (dso == nullptr). The `dso` argument is typically the address of a hidden // __dso_handle variable. This function is also used as the backend for the atexit function. // // See https://itanium-cxx-abi.github.io/cxx-abi/abi.html#dso-dtor. // int __cxa_atexit(void (*func)(void*), void* arg, void* dso) { int result = -1; if (func != nullptr) { atexit_lock(); if (g_array.append_entry({.fn = func, .arg = arg, .dso = dso})) { result = 0; } atexit_unlock(); } return result; } void __cxa_finalize(void* dso) { atexit_lock(); static uint32_t call_depth = 0; ++call_depth; restart: const uint64_t total_appends = g_array.total_appends(); for (ssize_t i = g_array.size() - 1; i >= 0; --i) { if (g_array[i].fn == nullptr || (dso != nullptr && g_array[i].dso != dso)) continue; // Clear the entry in the array because its DSO handle will become invalid, and to avoid calling // an entry again if __cxa_finalize is called recursively. const AtexitEntry entry = g_array.extract_entry(i); atexit_unlock(); entry.fn(entry.arg); atexit_lock(); if (g_array.total_appends() != total_appends) goto restart; } // Avoid recompaction on recursive calls because it's unnecessary and would require earlier, // concurrent __cxa_finalize calls to restart. Skip recompaction on program exit too // (dso == nullptr), because the memory will be reclaimed soon anyway. --call_depth; if (call_depth == 0 && dso != nullptr) { g_array.recompact(); } atexit_unlock(); if (dso != nullptr) { __unregister_atfork(dso); } else { // If called via exit(), flush output of all open files. __libc_stdio_cleanup(); } }