/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "SignalUtils.h" #include "utils.h" using namespace std::chrono_literals; #if defined(ANDROID_HOST_MUSL) // Musl doesn't export __SIGRTMIN and __SIGRTMAX, #define // them here. #define __SIGRTMIN 32 #define __SIGRTMAX 64 #endif static int SIGNAL_MIN() { return 1; // Signals start at 1 (SIGHUP), not 0. } template static int SIGNAL_MAX(SigSetT* set) { return sizeof(*set) * 8; } template static void TestSigSet1(int (fn)(SigSetT*)) { // nullptr sigset_t*/sigset64_t*. SigSetT* set_ptr = nullptr; errno = 0; ASSERT_EQ(-1, fn(set_ptr)); ASSERT_EQ(EINVAL, errno); // Non-nullptr. SigSetT set = {}; errno = 0; ASSERT_EQ(0, fn(&set)); ASSERT_EQ(0, errno); } template static void TestSigSet2(int (fn)(SigSetT*, int)) { // nullptr sigset_t*/sigset64_t*. SigSetT* set_ptr = nullptr; errno = 0; ASSERT_EQ(-1, fn(set_ptr, SIGSEGV)); ASSERT_EQ(EINVAL, errno); SigSetT set = {}; // Bad signal number: too small. errno = 0; ASSERT_EQ(-1, fn(&set, 0)); ASSERT_EQ(EINVAL, errno); // Bad signal number: too high. errno = 0; ASSERT_EQ(-1, fn(&set, SIGNAL_MAX(&set) + 1)); ASSERT_EQ(EINVAL, errno); // Good signal numbers, low and high ends of range. errno = 0; ASSERT_EQ(0, fn(&set, SIGNAL_MIN())); ASSERT_EQ(0, errno); ASSERT_EQ(0, fn(&set, SIGNAL_MAX(&set))); ASSERT_EQ(0, errno); } TEST(signal, sigaddset_invalid) { TestSigSet2(sigaddset); } TEST(signal, sigaddset64_invalid) { #if defined(__BIONIC__) TestSigSet2(sigaddset64); #endif } TEST(signal, sigdelset_invalid) { TestSigSet2(sigdelset); } TEST(signal, sigdelset64_invalid) { #if defined(__BIONIC__) TestSigSet2(sigdelset64); #endif } TEST(signal, sigemptyset_invalid) { TestSigSet1(sigemptyset); } TEST(signal, sigemptyset64_invalid) { #if defined(__BIONIC__) TestSigSet1(sigemptyset64); #endif } TEST(signal, sigfillset_invalid) { TestSigSet1(sigfillset); } TEST(signal, sigfillset64_invalid) { #if defined(__BIONIC__) TestSigSet1(sigfillset64); #endif } TEST(signal, sigismember_invalid) { TestSigSet2(sigismember); } TEST(signal, sigismember64_invalid) { #if defined(__BIONIC__) TestSigSet2(sigismember64); #endif } TEST(signal, raise_invalid) { errno = 0; ASSERT_EQ(-1, raise(-1)); ASSERT_EQ(EINVAL, errno); } static void raise_in_signal_handler_helper(int signal_number) { ASSERT_EQ(SIGALRM, signal_number); static int count = 0; if (++count == 1) { raise(SIGALRM); } } TEST(signal, raise_in_signal_handler) { ScopedSignalHandler ssh(SIGALRM, raise_in_signal_handler_helper); raise(SIGALRM); } static int g_sigsuspend_signal_handler_call_count = 0; TEST(signal, sigsuspend_sigpending) { SignalMaskRestorer smr; // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, nullptr)); ScopedSignalHandler ssh(SIGALRM, [](int) { ++g_sigsuspend_signal_handler_call_count; }); // There should be no pending signals. sigset_t pending; sigemptyset(&pending); ASSERT_EQ(0, sigpending(&pending)); for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) { EXPECT_FALSE(sigismember(&pending, i)) << i; } // Raise SIGALRM and check our signal handler wasn't called. raise(SIGALRM); ASSERT_EQ(0, g_sigsuspend_signal_handler_call_count); // We should now have a pending SIGALRM but nothing else. sigemptyset(&pending); ASSERT_EQ(0, sigpending(&pending)); for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) { EXPECT_EQ((i == SIGALRM), sigismember(&pending, i)); } // Use sigsuspend to block everything except SIGALRM... sigset_t not_SIGALRM; sigfillset(¬_SIGALRM); sigdelset(¬_SIGALRM, SIGALRM); ASSERT_EQ(-1, sigsuspend(¬_SIGALRM)); ASSERT_EQ(EINTR, errno); // ...and check that we now receive our pending SIGALRM. ASSERT_EQ(1, g_sigsuspend_signal_handler_call_count); } static int g_sigsuspend64_signal_handler_call_count = 0; TEST(signal, sigsuspend64_sigpending64) { SignalMaskRestorer smr; // Block SIGRTMIN. sigset64_t just_SIGRTMIN; sigemptyset64(&just_SIGRTMIN); sigaddset64(&just_SIGRTMIN, SIGRTMIN); ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &just_SIGRTMIN, nullptr)); ScopedSignalHandler ssh(SIGRTMIN, [](int) { ++g_sigsuspend64_signal_handler_call_count; }); // There should be no pending signals. sigset64_t pending; sigemptyset64(&pending); ASSERT_EQ(0, sigpending64(&pending)); for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) { EXPECT_FALSE(sigismember64(&pending, i)) << i; } // Raise SIGRTMIN and check our signal handler wasn't called. raise(SIGRTMIN); ASSERT_EQ(0, g_sigsuspend64_signal_handler_call_count); // We should now have a pending SIGRTMIN but nothing else. sigemptyset64(&pending); ASSERT_EQ(0, sigpending64(&pending)); for (int i = SIGNAL_MIN(); i <= SIGNAL_MAX(&pending); ++i) { EXPECT_EQ((i == SIGRTMIN), sigismember64(&pending, i)); } // Use sigsuspend64 to block everything except SIGRTMIN... sigset64_t not_SIGRTMIN; sigfillset64(¬_SIGRTMIN); sigdelset64(¬_SIGRTMIN, SIGRTMIN); ASSERT_EQ(-1, sigsuspend64(¬_SIGRTMIN)); ASSERT_EQ(EINTR, errno); // ...and check that we now receive our pending SIGRTMIN. ASSERT_EQ(1, g_sigsuspend64_signal_handler_call_count); } template static void TestSigAction(int (sigaction_fn)(int, const SigActionT*, SigActionT*), int (sigaddset_fn)(SigSetT*, int), int sig) { // Both bionic and glibc set SA_RESTORER when talking to the kernel on arm, // arm64, x86, and x86-64. The version of glibc we're using also doesn't // define SA_RESTORER, but luckily it's the same value everywhere. static const unsigned sa_restorer = 0x4000000; // See what's currently set for this signal. SigActionT original_sa = {}; ASSERT_EQ(0, sigaction_fn(sig, nullptr, &original_sa)); ASSERT_TRUE(original_sa.sa_handler == nullptr); ASSERT_TRUE(original_sa.sa_sigaction == nullptr); ASSERT_EQ(0U, original_sa.sa_flags & ~sa_restorer); #ifdef SA_RESTORER ASSERT_EQ(bool(original_sa.sa_flags & sa_restorer), bool(original_sa.sa_restorer)); #endif // Set a traditional sa_handler signal handler. auto no_op_signal_handler = [](int) {}; SigActionT sa = {}; sigaddset_fn(&sa.sa_mask, sig); sa.sa_flags = SA_ONSTACK; sa.sa_handler = no_op_signal_handler; ASSERT_EQ(0, sigaction_fn(sig, &sa, nullptr)); // Check that we can read it back. sa = {}; ASSERT_EQ(0, sigaction_fn(sig, nullptr, &sa)); ASSERT_TRUE(sa.sa_handler == no_op_signal_handler); ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler); ASSERT_EQ(static_cast(SA_ONSTACK), sa.sa_flags & ~sa_restorer); #ifdef SA_RESTORER ASSERT_EQ(bool(sa.sa_flags & sa_restorer), bool(sa.sa_restorer)); #endif // Set a new-style sa_sigaction signal handler. auto no_op_sigaction = [](int, siginfo_t*, void*) {}; sa = {}; sigaddset_fn(&sa.sa_mask, sig); sa.sa_flags = SA_ONSTACK | SA_SIGINFO; sa.sa_sigaction = no_op_sigaction; ASSERT_EQ(0, sigaction_fn(sig, &sa, nullptr)); // Check that we can read it back. sa = {}; ASSERT_EQ(0, sigaction_fn(sig, nullptr, &sa)); ASSERT_TRUE(sa.sa_sigaction == no_op_sigaction); ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler); ASSERT_EQ(static_cast(SA_ONSTACK | SA_SIGINFO), sa.sa_flags & ~sa_restorer); #ifdef SA_RESTORER ASSERT_EQ(bool(sa.sa_flags & sa_restorer), bool(sa.sa_restorer)); #endif // Put everything back how it was. ASSERT_EQ(0, sigaction_fn(sig, &original_sa, nullptr)); } TEST(signal, sigaction) { TestSigAction(sigaction, sigaddset, SIGALRM); } TEST(signal, sigaction64_SIGRTMIN) { TestSigAction(sigaction64, sigaddset64, SIGRTMIN); } static void ClearSignalMask() { uint64_t sigset = 0; SignalSetAdd(&sigset, __SIGRTMIN); if (syscall(__NR_rt_sigprocmask, SIG_SETMASK, &sigset, nullptr, sizeof(sigset)) != 0) { abort(); } } static void FillSignalMask() { uint64_t sigset = ~0ULL; for (int signo = __SIGRTMIN + 1; signo < SIGRTMIN; ++signo) { SignalSetDel(&sigset, signo); } if (syscall(__NR_rt_sigprocmask, SIG_SETMASK, &sigset, nullptr, sizeof(sigset)) != 0) { abort(); } } static uint64_t GetSignalMask() { uint64_t sigset; if (syscall(__NR_rt_sigprocmask, SIG_SETMASK, nullptr, &sigset, sizeof(sigset)) != 0) { abort(); } return sigset; } static void TestSignalMaskFiltered(uint64_t sigset) { #if defined(__BIONIC__) for (int signo = __SIGRTMIN; signo < SIGRTMIN; ++signo) { bool signal_blocked = sigset & (1ULL << (signo - 1)); if (signo == __SIGRTMIN) { // TIMER_SIGNAL must be blocked. EXPECT_EQ(true, signal_blocked) << "signal " << signo; } else { // The other reserved signals must not be blocked. EXPECT_EQ(false, signal_blocked) << "signal " << signo; } } #else UNUSED(sigset); #endif } static void TestSignalMaskFunction(std::function fn) { ClearSignalMask(); fn(); TestSignalMaskFiltered(GetSignalMask()); } TEST(signal, sigaction_filter) { ClearSignalMask(); static uint64_t sigset; struct sigaction sa = {}; sa.sa_handler = [](int) { sigset = GetSignalMask(); }; sa.sa_flags = SA_ONSTACK | SA_NODEFER; sigfillset(&sa.sa_mask); sigaction(SIGUSR1, &sa, nullptr); raise(SIGUSR1); // On LP32, struct sigaction::sa_mask is only 32-bits wide. unsigned long expected_sigset = ~0UL; // SIGKILL and SIGSTOP are always blocked. expected_sigset &= ~(1UL << (SIGKILL - 1)); expected_sigset &= ~(1UL << (SIGSTOP - 1)); ASSERT_EQ(static_cast(expected_sigset), sigset); } TEST(signal, sigaction64_filter) { ClearSignalMask(); static uint64_t sigset; struct sigaction64 sa = {}; sa.sa_handler = [](int) { sigset = GetSignalMask(); }; sa.sa_flags = SA_ONSTACK | SA_NODEFER; sigfillset64(&sa.sa_mask); sigaction64(SIGUSR1, &sa, nullptr); raise(SIGUSR1); uint64_t expected_sigset = ~0ULL; // SIGKILL and SIGSTOP are always blocked. expected_sigset &= ~(1ULL << (SIGKILL - 1)); expected_sigset &= ~(1ULL << (SIGSTOP - 1)); ASSERT_EQ(expected_sigset, sigset); } TEST(signal, sigprocmask_setmask_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset_t sigset_libc; sigfillset(&sigset_libc); ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &sigset_libc, nullptr)); }); } TEST(signal, sigprocmask64_setmask_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset64_t sigset_libc; sigfillset64(&sigset_libc); ASSERT_EQ(0, sigprocmask64(SIG_SETMASK, &sigset_libc, nullptr)); }); } TEST(signal, pthread_sigmask_setmask_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset_t sigset_libc; sigfillset(&sigset_libc); ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &sigset_libc, nullptr)); }); } TEST(signal, pthread_sigmask64_setmask_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset64_t sigset_libc; sigfillset64(&sigset_libc); ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &sigset_libc, nullptr)); }); } TEST(signal, sigprocmask_block_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset_t sigset_libc; sigfillset(&sigset_libc); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &sigset_libc, nullptr)); }); } TEST(signal, sigprocmask64_block_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset64_t sigset_libc; sigfillset64(&sigset_libc); ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &sigset_libc, nullptr)); }); } TEST(signal, pthread_sigmask_block_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset_t sigset_libc; sigfillset(&sigset_libc); ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &sigset_libc, nullptr)); }); } TEST(signal, pthread_sigmask64_block_filter) { TestSignalMaskFunction([]() { ClearSignalMask(); sigset64_t sigset_libc; sigfillset64(&sigset_libc); ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &sigset_libc, nullptr)); }); } TEST(signal, sigprocmask_unblock_filter) { TestSignalMaskFunction([]() { FillSignalMask(); sigset_t sigset_libc; sigfillset(&sigset_libc); ASSERT_EQ(0, sigprocmask(SIG_UNBLOCK, &sigset_libc, nullptr)); }); } TEST(signal, sigprocmask64_unblock_filter) { TestSignalMaskFunction([]() { FillSignalMask(); sigset64_t sigset_libc; sigfillset64(&sigset_libc); ASSERT_EQ(0, sigprocmask64(SIG_UNBLOCK, &sigset_libc, nullptr)); }); } TEST(signal, pthread_sigmask_unblock_filter) { TestSignalMaskFunction([]() { FillSignalMask(); sigset_t sigset_libc; sigfillset(&sigset_libc); ASSERT_EQ(0, pthread_sigmask(SIG_UNBLOCK, &sigset_libc, nullptr)); }); } TEST(signal, pthread_sigmask64_unblock_filter) { TestSignalMaskFunction([]() { FillSignalMask(); sigset64_t sigset_libc; sigfillset64(&sigset_libc); ASSERT_EQ(0, pthread_sigmask64(SIG_UNBLOCK, &sigset_libc, nullptr)); }); } // glibc filters out signals via sigfillset, not the actual underlying functions. TEST(signal, sigset_filter) { #if defined(__BIONIC__) TestSignalMaskFunction([]() { for (int i = 1; i <= 64; ++i) { sigset(i, SIG_HOLD); } }); #endif } TEST(signal, sighold_filter) { #if defined(__BIONIC__) TestSignalMaskFunction([]() { for (int i = 1; i <= 64; ++i) { sighold(i); } }); #endif } #if defined(__BIONIC__) // Not exposed via headers, but the symbols are available if you declare them yourself. extern "C" int sigblock(int); extern "C" int sigsetmask(int); #endif TEST(signal, sigblock_filter) { #if defined(__BIONIC__) TestSignalMaskFunction([]() { sigblock(~0U); }); #endif } TEST(signal, sigsetmask_filter) { #if defined(__BIONIC__) TestSignalMaskFunction([]() { sigsetmask(~0U); }); #endif } TEST(signal, sys_signame) { #if defined(__BIONIC__) ASSERT_TRUE(sys_signame[0] == nullptr); ASSERT_STREQ("HUP", sys_signame[SIGHUP]); #else GTEST_SKIP() << "glibc doesn't have sys_signame"; #endif } TEST(signal, sys_siglist) { #if !defined(ANDROID_HOST_MUSL) ASSERT_TRUE(sys_siglist[0] == nullptr); ASSERT_STREQ("Hangup", sys_siglist[SIGHUP]); #else GTEST_SKIP() << "musl doesn't have sys_siglist"; #endif } TEST(signal, limits) { // These come from the kernel. ASSERT_EQ(32, __SIGRTMIN); ASSERT_EQ(64, __SIGRTMAX); // We reserve a non-zero number at the bottom for ourselves. ASSERT_GT(SIGRTMIN, __SIGRTMIN); // We don't currently reserve any at the top. ASSERT_EQ(SIGRTMAX, __SIGRTMAX); } static int g_sigqueue_signal_handler_call_count = 0; static void SigqueueSignalHandler(int signum, siginfo_t* info, void*) { ASSERT_EQ(SIGALRM, signum); ASSERT_EQ(SIGALRM, info->si_signo); ASSERT_EQ(SI_QUEUE, info->si_code); ASSERT_EQ(1, info->si_value.sival_int); ++g_sigqueue_signal_handler_call_count; } TEST(signal, sigqueue) { ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO); sigval sigval = {.sival_int = 1}; errno = 0; ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval)); ASSERT_EQ(0, errno); ASSERT_EQ(1, g_sigqueue_signal_handler_call_count); } TEST(signal, pthread_sigqueue_self) { #if !defined(ANDROID_HOST_MUSL) ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO); sigval sigval = {.sival_int = 1}; errno = 0; ASSERT_EQ(0, pthread_sigqueue(pthread_self(), SIGALRM, sigval)); ASSERT_EQ(0, errno); ASSERT_EQ(1, g_sigqueue_signal_handler_call_count); #else GTEST_SKIP() << "musl doesn't have pthread_sigqueue"; #endif } TEST(signal, pthread_sigqueue_other) { #if !defined(ANDROID_HOST_MUSL) ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO); sigval sigval = {.sival_int = 1}; sigset_t mask; sigfillset(&mask); pthread_sigmask(SIG_SETMASK, &mask, nullptr); pthread_t thread; int rc = pthread_create(&thread, nullptr, [](void*) -> void* { sigset_t mask; sigemptyset(&mask); sigsuspend(&mask); return nullptr; }, nullptr); ASSERT_EQ(0, rc); errno = 0; ASSERT_EQ(0, pthread_sigqueue(thread, SIGALRM, sigval)); ASSERT_EQ(0, errno); pthread_join(thread, nullptr); ASSERT_EQ(1, g_sigqueue_signal_handler_call_count); #else GTEST_SKIP() << "musl doesn't have pthread_sigqueue"; #endif } TEST(signal, sigwait_SIGALRM) { SignalMaskRestorer smr; // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, nullptr)); // Raise SIGALRM. sigval sigval = {.sival_int = 1}; ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval)); // Get pending SIGALRM. int sig; ASSERT_EQ(0, sigwait(&just_SIGALRM, &sig)); ASSERT_EQ(SIGALRM, sig); } TEST(signal, sigwait64_SIGRTMIN) { SignalMaskRestorer smr; // Block SIGRTMIN. sigset64_t just_SIGRTMIN; sigemptyset64(&just_SIGRTMIN); sigaddset64(&just_SIGRTMIN, SIGRTMIN); ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &just_SIGRTMIN, nullptr)); // Raise SIGRTMIN. sigval sigval = {.sival_int = 1}; ASSERT_EQ(0, sigqueue(getpid(), SIGRTMIN, sigval)); // Get pending SIGRTMIN. int sig; ASSERT_EQ(0, sigwait64(&just_SIGRTMIN, &sig)); ASSERT_EQ(SIGRTMIN, sig); } TEST(signal, sigwaitinfo) { SignalMaskRestorer smr; // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, nullptr)); // Raise SIGALRM. sigval sigval = {.sival_int = 1}; ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval)); // Get pending SIGALRM. siginfo_t info; errno = 0; ASSERT_EQ(SIGALRM, sigwaitinfo(&just_SIGALRM, &info)); ASSERT_EQ(0, errno); ASSERT_EQ(SIGALRM, info.si_signo); ASSERT_EQ(1, info.si_value.sival_int); } TEST(signal, sigwaitinfo64_SIGRTMIN) { SignalMaskRestorer smr; // Block SIGRTMIN. sigset64_t just_SIGRTMIN; sigemptyset64(&just_SIGRTMIN); sigaddset64(&just_SIGRTMIN, SIGRTMIN); ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &just_SIGRTMIN, nullptr)); // Raise SIGRTMIN. sigval sigval = {.sival_int = 1}; ASSERT_EQ(0, sigqueue(getpid(), SIGRTMIN, sigval)); // Get pending SIGRTMIN. siginfo_t info; errno = 0; ASSERT_EQ(SIGRTMIN, sigwaitinfo64(&just_SIGRTMIN, &info)); ASSERT_EQ(0, errno); ASSERT_EQ(SIGRTMIN, info.si_signo); ASSERT_EQ(1, info.si_value.sival_int); } TEST(signal, sigtimedwait) { SignalMaskRestorer smr; // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, nullptr)); // Raise SIGALRM. sigval sigval = { .sival_int = 1 }; ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval)); // Get pending SIGALRM. siginfo_t info; timespec timeout = { .tv_sec = 2, .tv_nsec = 0 }; errno = 0; ASSERT_EQ(SIGALRM, sigtimedwait(&just_SIGALRM, &info, &timeout)); ASSERT_EQ(0, errno); } TEST(signal, sigtimedwait64_SIGRTMIN) { SignalMaskRestorer smr; // Block SIGRTMIN. sigset64_t just_SIGRTMIN; sigemptyset64(&just_SIGRTMIN); sigaddset64(&just_SIGRTMIN, SIGRTMIN); ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, &just_SIGRTMIN, nullptr)); // Raise SIGALRM. sigval sigval = { .sival_int = 1 }; ASSERT_EQ(0, sigqueue(getpid(), SIGRTMIN, sigval)); // Get pending SIGALRM. siginfo_t info; timespec timeout = { .tv_sec = 2, .tv_nsec = 0 }; errno = 0; ASSERT_EQ(SIGRTMIN, sigtimedwait64(&just_SIGRTMIN, &info, &timeout)); ASSERT_EQ(0, errno); } TEST(signal, sigtimedwait_timeout) { // Block SIGALRM. sigset_t just_SIGALRM; sigemptyset(&just_SIGALRM); sigaddset(&just_SIGALRM, SIGALRM); sigset_t original_set; ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set)); // Wait timeout. auto t0 = std::chrono::steady_clock::now(); siginfo_t info; timespec timeout = { .tv_sec = 0, .tv_nsec = 1000000 }; errno = 0; ASSERT_EQ(-1, sigtimedwait(&just_SIGALRM, &info, &timeout)); ASSERT_EQ(EAGAIN, errno); auto t1 = std::chrono::steady_clock::now(); ASSERT_GE(t1-t0, 1000000ns); ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, nullptr)); } #if defined(__BIONIC__) TEST(signal, rt_tgsigqueueinfo) { // Test whether rt_tgsigqueueinfo allows sending arbitrary si_code values to self. // If this fails, your kernel needs commit 66dd34a to be backported. static constexpr char error_msg[] = "\nPlease ensure that the following kernel patch has been applied:\n" "* https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=66dd34ad31e5963d72a700ec3f2449291d322921\n"; static siginfo received; struct sigaction handler = {}; handler.sa_sigaction = [](int, siginfo_t* siginfo, void*) { received = *siginfo; }; handler.sa_flags = SA_SIGINFO; ASSERT_EQ(0, sigaction(SIGUSR1, &handler, nullptr)); siginfo sent; memset(&sent, 0, sizeof(sent)); sent.si_code = SI_TKILL; ASSERT_EQ(0, syscall(SYS_rt_tgsigqueueinfo, getpid(), gettid(), SIGUSR1, &sent)) << "rt_tgsigqueueinfo failed: " << strerror(errno) << error_msg; ASSERT_EQ(sent.si_code, received.si_code) << "rt_tgsigqueueinfo modified si_code, expected " << sent.si_code << ", received " << received.si_code << error_msg; sent.si_code = SI_USER; ASSERT_EQ(0, syscall(SYS_rt_tgsigqueueinfo, getpid(), gettid(), SIGUSR1, &sent)) << "rt_tgsigqueueinfo failed: " << strerror(errno) << error_msg; ASSERT_EQ(sent.si_code, received.si_code) << "rt_tgsigqueueinfo modified si_code, expected " << sent.si_code << ", received " << received.si_code << error_msg; } #endif TEST(signal, sigset_size) { // The setjmp implementations assume that sigset_t can fit in a long. // This is true because the 32-bit ABIs have broken rt signal support, // but the 64-bit ABIs both have a SIGRTMAX defined as 64. #if defined(__BIONIC__) static_assert(sizeof(sigset_t) <= sizeof(long), "sigset_t doesn't fit in a long"); #endif static_assert(sizeof(sigset64_t)*8 >= 64, "sigset64_t too small for real-time signals"); } TEST(signal, sigignore_EINVAL) { errno = 0; ASSERT_EQ(-1, sigignore(99999)); ASSERT_EQ(EINVAL, errno); } TEST(signal, sigignore) { errno = 0; EXPECT_EQ(-1, sigignore(SIGKILL)); EXPECT_EQ(errno, EINVAL); errno = 0; EXPECT_EQ(-1, sigignore(SIGSTOP)); EXPECT_EQ(errno, EINVAL); ScopedSignalHandler sigalrm{SIGALRM}; ASSERT_EQ(0, sigignore(SIGALRM)); struct sigaction sa; ASSERT_EQ(0, sigaction(SIGALRM, nullptr, &sa)); EXPECT_EQ(SIG_IGN, sa.sa_handler); } TEST(signal, sighold_EINVAL) { errno = 0; ASSERT_EQ(-1, sighold(99999)); ASSERT_EQ(EINVAL, errno); } TEST(signal, sigpause_EINVAL) { errno = 0; ASSERT_EQ(-1, sigpause(99999)); ASSERT_EQ(EINVAL, errno); } TEST(signal, sigrelse_EINVAL) { errno = 0; ASSERT_EQ(-1, sigpause(99999)); ASSERT_EQ(EINVAL, errno); } static void TestSigholdSigpauseSigrelse(int sig) { static int signal_handler_call_count = 0; ScopedSignalHandler ssh{sig, [](int) { signal_handler_call_count++; }}; SignalMaskRestorer mask_restorer; sigset_t set; // sighold(SIGALRM/SIGRTMIN) should add SIGALRM/SIGRTMIN to the signal mask ... ASSERT_EQ(0, sighold(sig)); ASSERT_EQ(0, sigprocmask(SIG_SETMASK, nullptr, &set)); EXPECT_TRUE(sigismember(&set, sig)); // ... preventing our SIGALRM/SIGRTMIN handler from running ... raise(sig); ASSERT_EQ(0, signal_handler_call_count); // ... until sigpause(SIGALRM/SIGRTMIN) temporarily unblocks it. ASSERT_EQ(-1, sigpause(sig)); ASSERT_EQ(EINTR, errno); ASSERT_EQ(1, signal_handler_call_count); if (sig >= SIGRTMIN && sizeof(void*) == 8) { // But sigpause(SIGALRM/SIGRTMIN) shouldn't permanently unblock SIGALRM/SIGRTMIN. ASSERT_EQ(0, sigprocmask(SIG_SETMASK, nullptr, &set)); EXPECT_TRUE(sigismember(&set, sig)); // Whereas sigrelse(SIGALRM/SIGRTMIN) should. ASSERT_EQ(0, sigrelse(sig)); ASSERT_EQ(0, sigprocmask(SIG_SETMASK, nullptr, &set)); EXPECT_FALSE(sigismember(&set, sig)); } else { // sigismember won't work for SIGRTMIN on LP32. } } TEST(signal, sighold_sigpause_sigrelse) { TestSigholdSigpauseSigrelse(SIGALRM); } TEST(signal, sighold_sigpause_sigrelse_RT) { TestSigholdSigpauseSigrelse(SIGRTMIN); } TEST(signal, sigset_EINVAL) { errno = 0; ASSERT_EQ(SIG_ERR, sigset(99999, SIG_DFL)); ASSERT_EQ(EINVAL, errno); } TEST(signal, sigset_RT) { static int signal_handler_call_count = 0; auto signal_handler = [](int) { signal_handler_call_count++; }; ScopedSignalHandler ssh{SIGRTMIN, signal_handler}; SignalMaskRestorer mask_restorer; ASSERT_EQ(signal_handler, sigset(SIGRTMIN, SIG_HOLD)); #if defined(__LP64__) sigset_t set; ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set)); ASSERT_TRUE(sigismember(&set, SIGRTMIN)); #endif ASSERT_EQ(SIG_HOLD, sigset(SIGRTMIN, signal_handler)); ASSERT_EQ(signal_handler, sigset(SIGRTMIN, signal_handler)); ASSERT_EQ(0, signal_handler_call_count); raise(SIGRTMIN); ASSERT_EQ(1, signal_handler_call_count); } TEST(signal, sigset) { static int signal_handler_call_count = 0; auto signal_handler = [](int) { signal_handler_call_count++; }; ScopedSignalHandler ssh{SIGALRM, signal_handler}; SignalMaskRestorer mask_restorer; ASSERT_EQ(0, signal_handler_call_count); raise(SIGALRM); ASSERT_EQ(1, signal_handler_call_count); // Block SIGALRM so the next sigset(SIGARLM) call will return SIG_HOLD. sigset_t set; sigemptyset(&set); sigaddset(&set, SIGALRM); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &set, nullptr)); sigemptyset(&set); ASSERT_EQ(SIG_HOLD, sigset(SIGALRM, signal_handler)); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set)); EXPECT_FALSE(sigismember(&set, SIGALRM)); ASSERT_EQ(signal_handler, sigset(SIGALRM, SIG_IGN)); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set)); EXPECT_FALSE(sigismember(&set, SIGALRM)); ASSERT_EQ(SIG_IGN, sigset(SIGALRM, SIG_DFL)); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set)); EXPECT_FALSE(sigismember(&set, SIGALRM)); ASSERT_EQ(SIG_DFL, sigset(SIGALRM, SIG_HOLD)); ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set)); EXPECT_TRUE(sigismember(&set, SIGALRM)); } TEST(signal, killpg_EINVAL) { // POSIX leaves pgrp <= 1 undefined, but glibc fails with EINVAL for < 0 // and passes 0 through to kill(2). errno = 0; ASSERT_EQ(-1, killpg(-1, SIGKILL)); ASSERT_EQ(EINVAL, errno); }