/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "pthread_internal.h" #include #include "private/bionic_constants.h" #include "private/bionic_defs.h" #include "private/bionic_globals.h" #include "private/bionic_macros.h" #include "private/bionic_ssp.h" #include "private/bionic_systrace.h" #include "private/bionic_tls.h" #include "private/ErrnoRestorer.h" // x86 uses segment descriptors rather than a direct pointer to TLS. #if defined(__i386__) #include void __init_user_desc(struct user_desc*, bool, void*); #endif // This code is used both by each new pthread and the code that initializes the main thread. __attribute__((no_stack_protector)) void __init_tcb(bionic_tcb* tcb, pthread_internal_t* thread) { #ifdef TLS_SLOT_SELF // On x86, slot 0 must point to itself so code can read the thread pointer by // loading %fs:0 or %gs:0. tcb->tls_slot(TLS_SLOT_SELF) = &tcb->tls_slot(TLS_SLOT_SELF); #endif tcb->tls_slot(TLS_SLOT_THREAD_ID) = thread; } __attribute__((no_stack_protector)) void __init_tcb_stack_guard(bionic_tcb* tcb) { // GCC looks in the TLS for the stack guard on x86, so copy it there from our global. tcb->tls_slot(TLS_SLOT_STACK_GUARD) = reinterpret_cast(__stack_chk_guard); } __attribute__((no_stack_protector)) void __init_tcb_dtv(bionic_tcb* tcb) { // Initialize the DTV slot to a statically-allocated empty DTV. The first // access to a dynamic TLS variable allocates a new DTV. static const TlsDtv zero_dtv = {}; __set_tcb_dtv(tcb, const_cast(&zero_dtv)); } void __init_bionic_tls_ptrs(bionic_tcb* tcb, bionic_tls* tls) { tcb->thread()->bionic_tls = tls; tcb->tls_slot(TLS_SLOT_BIONIC_TLS) = tls; } // Allocate a temporary bionic_tls that the dynamic linker's main thread can // use while it's loading the initial set of ELF modules. bionic_tls* __allocate_temp_bionic_tls() { size_t allocation_size = __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE); void* allocation = mmap(nullptr, allocation_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (allocation == MAP_FAILED) { // Avoid strerror because it might need bionic_tls. async_safe_fatal("failed to allocate bionic_tls: error %d", errno); } return static_cast(allocation); } void __free_temp_bionic_tls(bionic_tls* tls) { munmap(tls, __BIONIC_ALIGN(sizeof(bionic_tls), PAGE_SIZE)); } static void __init_alternate_signal_stack(pthread_internal_t* thread) { // Create and set an alternate signal stack. void* stack_base = mmap(nullptr, SIGNAL_STACK_SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (stack_base != MAP_FAILED) { // Create a guard to catch stack overflows in signal handlers. if (mprotect(stack_base, PTHREAD_GUARD_SIZE, PROT_NONE) == -1) { munmap(stack_base, SIGNAL_STACK_SIZE); return; } stack_t ss; ss.ss_sp = reinterpret_cast(stack_base) + PTHREAD_GUARD_SIZE; ss.ss_size = SIGNAL_STACK_SIZE - PTHREAD_GUARD_SIZE; ss.ss_flags = 0; sigaltstack(&ss, nullptr); thread->alternate_signal_stack = stack_base; // We can only use const static allocated string for mapped region name, as Android kernel // uses the string pointer directly when dumping /proc/pid/maps. prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ss.ss_sp, ss.ss_size, "thread signal stack"); } } static void __init_shadow_call_stack(pthread_internal_t* thread __unused) { #ifdef __aarch64__ // Allocate the stack and the guard region. char* scs_guard_region = reinterpret_cast( mmap(nullptr, SCS_GUARD_REGION_SIZE, 0, MAP_PRIVATE | MAP_ANON, -1, 0)); thread->shadow_call_stack_guard_region = scs_guard_region; // The address is aligned to SCS_SIZE so that we only need to store the lower log2(SCS_SIZE) bits // in jmp_buf. char* scs_aligned_guard_region = reinterpret_cast(align_up(reinterpret_cast(scs_guard_region), SCS_SIZE)); // We need to ensure that [scs_offset,scs_offset+SCS_SIZE) is in the guard region and that there // is at least one unmapped page after the shadow call stack (to catch stack overflows). We can't // use arc4random_uniform in init because /dev/urandom might not have been created yet. size_t scs_offset = (getpid() == 1) ? 0 : (arc4random_uniform(SCS_GUARD_REGION_SIZE / SCS_SIZE - 1) * SCS_SIZE); // Make the stack readable and writable and store its address in register x18. This is // deliberately the only place where the address is stored. char *scs = scs_aligned_guard_region + scs_offset; mprotect(scs, SCS_SIZE, PROT_READ | PROT_WRITE); __asm__ __volatile__("mov x18, %0" ::"r"(scs)); #endif } void __init_additional_stacks(pthread_internal_t* thread) { __init_alternate_signal_stack(thread); __init_shadow_call_stack(thread); } int __init_thread(pthread_internal_t* thread) { thread->cleanup_stack = nullptr; if (__predict_true((thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) == 0)) { atomic_init(&thread->join_state, THREAD_NOT_JOINED); } else { atomic_init(&thread->join_state, THREAD_DETACHED); } // Set the scheduling policy/priority of the thread if necessary. bool need_set = true; int policy; sched_param param; if ((thread->attr.flags & PTHREAD_ATTR_FLAG_INHERIT) != 0) { // Unless the parent has SCHED_RESET_ON_FORK set, we've already inherited from the parent. policy = sched_getscheduler(0); need_set = ((policy & SCHED_RESET_ON_FORK) != 0); if (need_set) { if (policy == -1) { async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create sched_getscheduler failed: %s", strerror(errno)); return errno; } if (sched_getparam(0, ¶m) == -1) { async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create sched_getparam failed: %s", strerror(errno)); return errno; } } } else { policy = thread->attr.sched_policy; param.sched_priority = thread->attr.sched_priority; } // Backwards compatibility: before P, Android didn't have pthread_attr_setinheritsched, // and our behavior was neither of the POSIX behaviors. if ((thread->attr.flags & (PTHREAD_ATTR_FLAG_INHERIT|PTHREAD_ATTR_FLAG_EXPLICIT)) == 0) { need_set = (thread->attr.sched_policy != SCHED_NORMAL); } if (need_set) { if (sched_setscheduler(thread->tid, policy, ¶m) == -1) { async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create sched_setscheduler(%d, {%d}) call failed: %s", policy, param.sched_priority, strerror(errno)); #if defined(__LP64__) // For backwards compatibility reasons, we only report failures on 64-bit devices. return errno; #endif } } return 0; } // Allocate a thread's primary mapping. This mapping includes static TLS and // optionally a stack. Static TLS includes ELF TLS segments and the bionic_tls // struct. // // The stack_guard_size must be a multiple of the PAGE_SIZE. ThreadMapping __allocate_thread_mapping(size_t stack_size, size_t stack_guard_size) { const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout; // Allocate in order: stack guard, stack, static TLS, guard page. size_t mmap_size; if (__builtin_add_overflow(stack_size, stack_guard_size, &mmap_size)) return {}; if (__builtin_add_overflow(mmap_size, layout.size(), &mmap_size)) return {}; if (__builtin_add_overflow(mmap_size, PTHREAD_GUARD_SIZE, &mmap_size)) return {}; // Align the result to a page size. const size_t unaligned_size = mmap_size; mmap_size = __BIONIC_ALIGN(mmap_size, PAGE_SIZE); if (mmap_size < unaligned_size) return {}; // Create a new private anonymous map. Make the entire mapping PROT_NONE, then carve out a // read+write area in the middle. const int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE; char* const space = static_cast(mmap(nullptr, mmap_size, PROT_NONE, flags, -1, 0)); if (space == MAP_FAILED) { async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: couldn't allocate %zu-bytes mapped space: %s", mmap_size, strerror(errno)); return {}; } const size_t writable_size = mmap_size - stack_guard_size - PTHREAD_GUARD_SIZE; if (mprotect(space + stack_guard_size, writable_size, PROT_READ | PROT_WRITE) != 0) { async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: couldn't mprotect R+W %zu-byte thread mapping region: %s", writable_size, strerror(errno)); munmap(space, mmap_size); return {}; } ThreadMapping result = {}; result.mmap_base = space; result.mmap_size = mmap_size; result.mmap_base_unguarded = space + stack_guard_size; result.mmap_size_unguarded = mmap_size - stack_guard_size - PTHREAD_GUARD_SIZE; result.static_tls = space + mmap_size - PTHREAD_GUARD_SIZE - layout.size(); result.stack_base = space; result.stack_top = result.static_tls; return result; } static int __allocate_thread(pthread_attr_t* attr, bionic_tcb** tcbp, void** child_stack) { ThreadMapping mapping; char* stack_top; bool stack_clean = false; if (attr->stack_base == nullptr) { // The caller didn't provide a stack, so allocate one. // Make sure the guard size is a multiple of PAGE_SIZE. const size_t unaligned_guard_size = attr->guard_size; attr->guard_size = __BIONIC_ALIGN(attr->guard_size, PAGE_SIZE); if (attr->guard_size < unaligned_guard_size) return EAGAIN; mapping = __allocate_thread_mapping(attr->stack_size, attr->guard_size); if (mapping.mmap_base == nullptr) return EAGAIN; stack_top = mapping.stack_top; attr->stack_base = mapping.stack_base; stack_clean = true; } else { mapping = __allocate_thread_mapping(0, PTHREAD_GUARD_SIZE); if (mapping.mmap_base == nullptr) return EAGAIN; stack_top = static_cast(attr->stack_base) + attr->stack_size; } // Carve out space from the stack for the thread's pthread_internal_t. This // memory isn't counted in pthread_attr_getstacksize. // To safely access the pthread_internal_t and thread stack, we need to find a 16-byte aligned boundary. stack_top = align_down(stack_top - sizeof(pthread_internal_t), 16); pthread_internal_t* thread = reinterpret_cast(stack_top); if (!stack_clean) { // If thread was not allocated by mmap(), it may not have been cleared to zero. // So assume the worst and zero it. memset(thread, 0, sizeof(pthread_internal_t)); } // Locate static TLS structures within the mapped region. const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout; auto tcb = reinterpret_cast(mapping.static_tls + layout.offset_bionic_tcb()); auto tls = reinterpret_cast(mapping.static_tls + layout.offset_bionic_tls()); // Initialize TLS memory. __init_static_tls(mapping.static_tls); __init_tcb(tcb, thread); __init_tcb_dtv(tcb); __init_tcb_stack_guard(tcb); __init_bionic_tls_ptrs(tcb, tls); attr->stack_size = stack_top - static_cast(attr->stack_base); thread->attr = *attr; thread->mmap_base = mapping.mmap_base; thread->mmap_size = mapping.mmap_size; thread->mmap_base_unguarded = mapping.mmap_base_unguarded; thread->mmap_size_unguarded = mapping.mmap_size_unguarded; *tcbp = tcb; *child_stack = stack_top; return 0; } void __set_stack_and_tls_vma_name(bool is_main_thread) { // Name the thread's stack-and-tls area to help with debugging. This mapped area also includes // static TLS data, which is typically a few pages (e.g. bionic_tls). pthread_internal_t* thread = __get_thread(); const char* name; if (is_main_thread) { name = "stack_and_tls:main"; } else { // The kernel doesn't copy the name string, but this variable will last at least as long as the // mapped area. The mapped area's VMAs are unmapped with a single call to munmap. auto& name_buffer = thread->vma_name_buffer; static_assert(arraysize(name_buffer) >= arraysize("stack_and_tls:") + 11 + 1); async_safe_format_buffer(name_buffer, arraysize(name_buffer), "stack_and_tls:%d", thread->tid); name = name_buffer; } prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, thread->mmap_base_unguarded, thread->mmap_size_unguarded, name); } extern "C" int __rt_sigprocmask(int, const sigset64_t*, sigset64_t*, size_t); __attribute__((no_sanitize("hwaddress"))) static int __pthread_start(void* arg) { pthread_internal_t* thread = reinterpret_cast(arg); __hwasan_thread_enter(); // Wait for our creating thread to release us. This lets it have time to // notify gdb about this thread before we start doing anything. // This also provides the memory barrier needed to ensure that all memory // accesses previously made by the creating thread are visible to us. thread->startup_handshake_lock.lock(); __set_stack_and_tls_vma_name(false); __init_additional_stacks(thread); __rt_sigprocmask(SIG_SETMASK, &thread->start_mask, nullptr, sizeof(thread->start_mask)); void* result = thread->start_routine(thread->start_routine_arg); pthread_exit(result); return 0; } // A dummy start routine for pthread_create failures where we've created a thread but aren't // going to run user code on it. We swap out the user's start routine for this and take advantage // of the regular thread teardown to free up resources. static void* __do_nothing(void*) { return nullptr; } __BIONIC_WEAK_FOR_NATIVE_BRIDGE int pthread_create(pthread_t* thread_out, pthread_attr_t const* attr, void* (*start_routine)(void*), void* arg) { ErrnoRestorer errno_restorer; pthread_attr_t thread_attr; ScopedTrace trace("pthread_create"); if (attr == nullptr) { pthread_attr_init(&thread_attr); } else { thread_attr = *attr; attr = nullptr; // Prevent misuse below. } bionic_tcb* tcb = nullptr; void* child_stack = nullptr; int result = __allocate_thread(&thread_attr, &tcb, &child_stack); if (result != 0) { return result; } pthread_internal_t* thread = tcb->thread(); // Create a lock for the thread to wait on once it starts so we can keep // it from doing anything until after we notify the debugger about it // // This also provides the memory barrier we need to ensure that all // memory accesses previously performed by this thread are visible to // the new thread. thread->startup_handshake_lock.init(false); thread->startup_handshake_lock.lock(); thread->start_routine = start_routine; thread->start_routine_arg = arg; thread->set_cached_pid(getpid()); int flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM | CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID; void* tls = &tcb->tls_slot(0); #if defined(__i386__) // On x86 (but not x86-64), CLONE_SETTLS takes a pointer to a struct user_desc rather than // a pointer to the TLS itself. user_desc tls_descriptor; __init_user_desc(&tls_descriptor, false, tls); tls = &tls_descriptor; #endif sigset64_t block_all_mask; sigfillset64(&block_all_mask); __rt_sigprocmask(SIG_SETMASK, &block_all_mask, &thread->start_mask, sizeof(thread->start_mask)); int rc = clone(__pthread_start, child_stack, flags, thread, &(thread->tid), tls, &(thread->tid)); __rt_sigprocmask(SIG_SETMASK, &thread->start_mask, nullptr, sizeof(thread->start_mask)); if (rc == -1) { int clone_errno = errno; // We don't have to unlock the mutex at all because clone(2) failed so there's no child waiting to // be unblocked, but we're about to unmap the memory the mutex is stored in, so this serves as a // reminder that you can't rewrite this function to use a ScopedPthreadMutexLocker. thread->startup_handshake_lock.unlock(); if (thread->mmap_size != 0) { munmap(thread->mmap_base, thread->mmap_size); } async_safe_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: clone failed: %s", strerror(clone_errno)); return clone_errno; } int init_errno = __init_thread(thread); if (init_errno != 0) { // Mark the thread detached and replace its start_routine with a no-op. // Letting the thread run is the easiest way to clean up its resources. atomic_store(&thread->join_state, THREAD_DETACHED); __pthread_internal_add(thread); thread->start_routine = __do_nothing; thread->startup_handshake_lock.unlock(); return init_errno; } // Publish the pthread_t and unlock the mutex to let the new thread start running. *thread_out = __pthread_internal_add(thread); thread->startup_handshake_lock.unlock(); return 0; }