/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debug_backtrace.h" #include "malloc_debug_backtrace.h" #include "malloc_debug_common.h" #include "malloc_debug_disable.h" #include "private/bionic_macros.h" #include "private/libc_logging.h" #include "private/ScopedPthreadMutexLocker.h" extern int gMallocLeakZygoteChild; extern HashTable* g_hash_table; extern const MallocDebug* g_malloc_dispatch; // ============================================================================= // stack trace functions // ============================================================================= #define GUARD 0x48151642 #define DEBUG 0 // ============================================================================= // Structures // ============================================================================= struct AllocationEntry { HashEntry* entry; uint32_t guard; } __attribute__((aligned(MALLOC_ALIGNMENT))); static inline AllocationEntry* to_header(void* mem) { return reinterpret_cast(mem) - 1; } static inline const AllocationEntry* const_to_header(const void* mem) { return reinterpret_cast(mem) - 1; } // ============================================================================= // Hash Table functions // ============================================================================= static uint32_t get_hash(uintptr_t* backtrace, size_t numEntries) { if (backtrace == NULL) return 0; int hash = 0; size_t i; for (i = 0 ; i < numEntries ; i++) { hash = (hash * 33) + (backtrace[i] >> 2); } return hash; } static HashEntry* find_entry(HashTable* table, int slot, uintptr_t* backtrace, size_t numEntries, size_t size) { HashEntry* entry = table->slots[slot]; while (entry != NULL) { //debug_log("backtrace: %p, entry: %p entry->backtrace: %p\n", // backtrace, entry, (entry != NULL) ? entry->backtrace : NULL); /* * See if the entry matches exactly. We compare the "size" field, * including the flag bits. */ if (entry->size == size && entry->numEntries == numEntries && !memcmp(backtrace, entry->backtrace, numEntries * sizeof(uintptr_t))) { return entry; } entry = entry->next; } return NULL; } static HashEntry* record_backtrace(uintptr_t* backtrace, size_t numEntries, size_t size) { size_t hash = get_hash(backtrace, numEntries); size_t slot = hash % HASHTABLE_SIZE; if (size & SIZE_FLAG_MASK) { debug_log("malloc_debug: allocation %zx exceeds bit width\n", size); abort(); } if (gMallocLeakZygoteChild) { size |= SIZE_FLAG_ZYGOTE_CHILD; } // Keep the lock held for as little time as possible to prevent deadlocks. ScopedPthreadMutexLocker locker(&g_hash_table->lock); HashEntry* entry = find_entry(g_hash_table, slot, backtrace, numEntries, size); if (entry != NULL) { entry->allocations++; } else { // create a new entry entry = static_cast(g_malloc_dispatch->malloc(sizeof(HashEntry) + numEntries*sizeof(uintptr_t))); if (!entry) { return NULL; } entry->allocations = 1; entry->slot = slot; entry->prev = NULL; entry->next = g_hash_table->slots[slot]; entry->numEntries = numEntries; entry->size = size; memcpy(entry->backtrace, backtrace, numEntries * sizeof(uintptr_t)); g_hash_table->slots[slot] = entry; if (entry->next != NULL) { entry->next->prev = entry; } // we just added an entry, increase the size of the hashtable g_hash_table->count++; } return entry; } static int is_valid_entry(HashEntry* entry) { if (entry != NULL) { for (size_t i = 0; i < HASHTABLE_SIZE; ++i) { HashEntry* e1 = g_hash_table->slots[i]; while (e1 != NULL) { if (e1 == entry) { return 1; } e1 = e1->next; } } } return 0; } static void remove_entry(HashEntry* entry) { HashEntry* prev = entry->prev; HashEntry* next = entry->next; if (prev != NULL) entry->prev->next = next; if (next != NULL) entry->next->prev = prev; if (prev == NULL) { // we are the head of the list. set the head to be next g_hash_table->slots[entry->slot] = entry->next; } // we just removed and entry, decrease the size of the hashtable g_hash_table->count--; } // ============================================================================= // malloc fill functions // ============================================================================= #define CHK_FILL_FREE 0xef #define CHK_SENTINEL_VALUE 0xeb extern "C" void* fill_calloc(size_t n_elements, size_t elem_size) { return g_malloc_dispatch->calloc(n_elements, elem_size); } extern "C" void* fill_malloc(size_t bytes) { void* buffer = g_malloc_dispatch->malloc(bytes); if (buffer) { memset(buffer, CHK_SENTINEL_VALUE, bytes); } return buffer; } extern "C" void fill_free(void* mem) { size_t bytes = g_malloc_dispatch->malloc_usable_size(mem); memset(mem, CHK_FILL_FREE, bytes); g_malloc_dispatch->free(mem); } extern "C" void* fill_realloc(void* mem, size_t bytes) { size_t oldSize = g_malloc_dispatch->malloc_usable_size(mem); void* newMem = g_malloc_dispatch->realloc(mem, bytes); if (newMem) { // If this is larger than before, fill the extra with our pattern. size_t newSize = g_malloc_dispatch->malloc_usable_size(newMem); if (newSize > oldSize) { memset(reinterpret_cast(reinterpret_cast(newMem)+oldSize), CHK_FILL_FREE, newSize-oldSize); } } return newMem; } extern "C" void* fill_memalign(size_t alignment, size_t bytes) { void* buffer = g_malloc_dispatch->memalign(alignment, bytes); if (buffer) { memset(buffer, CHK_SENTINEL_VALUE, bytes); } return buffer; } extern "C" size_t fill_malloc_usable_size(const void* mem) { // Since we didn't allocate extra bytes before or after, we can // report the normal usable size here. return g_malloc_dispatch->malloc_usable_size(mem); } extern "C" struct mallinfo fill_mallinfo() { return g_malloc_dispatch->mallinfo(); } extern "C" int fill_posix_memalign(void** memptr, size_t alignment, size_t size) { if (!powerof2(alignment)) { return EINVAL; } int saved_errno = errno; *memptr = fill_memalign(alignment, size); errno = saved_errno; return (*memptr != NULL) ? 0 : ENOMEM; } #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) extern "C" void* fill_pvalloc(size_t bytes) { size_t pagesize = getpagesize(); size_t size = BIONIC_ALIGN(bytes, pagesize); if (size < bytes) { // Overflow return NULL; } return fill_memalign(pagesize, size); } extern "C" void* fill_valloc(size_t size) { return fill_memalign(getpagesize(), size); } #endif // ============================================================================= // malloc leak functions // ============================================================================= static uint32_t MEMALIGN_GUARD = 0xA1A41520; extern "C" void* leak_malloc(size_t bytes) { if (DebugCallsDisabled()) { return g_malloc_dispatch->malloc(bytes); } // allocate enough space infront of the allocation to store the pointer for // the alloc structure. This will making free'ing the structer really fast! // 1. allocate enough memory and include our header // 2. set the base pointer to be right after our header size_t size = bytes + sizeof(AllocationEntry); if (size < bytes) { // Overflow. errno = ENOMEM; return NULL; } void* base = g_malloc_dispatch->malloc(size); if (base != NULL) { uintptr_t backtrace[BACKTRACE_SIZE]; size_t numEntries = GET_BACKTRACE(backtrace, BACKTRACE_SIZE); AllocationEntry* header = reinterpret_cast(base); header->entry = record_backtrace(backtrace, numEntries, bytes); header->guard = GUARD; // now increment base to point to after our header. // this should just work since our header is 8 bytes. base = reinterpret_cast(base) + 1; } return base; } extern "C" void leak_free(void* mem) { if (DebugCallsDisabled()) { return g_malloc_dispatch->free(mem); } if (mem == NULL) { return; } // check the guard to make sure it is valid AllocationEntry* header = to_header(mem); if (header->guard != GUARD) { // could be a memaligned block if (header->guard == MEMALIGN_GUARD) { // For memaligned blocks, header->entry points to the memory // allocated through leak_malloc. header = to_header(header->entry); } } ScopedPthreadMutexLocker locker(&g_hash_table->lock); if (header->guard == GUARD || is_valid_entry(header->entry)) { // decrement the allocations HashEntry* entry = header->entry; entry->allocations--; if (entry->allocations <= 0) { remove_entry(entry); g_malloc_dispatch->free(entry); } // now free the memory! g_malloc_dispatch->free(header); } else { debug_log("WARNING bad header guard: '0x%x'! and invalid entry: %p\n", header->guard, header->entry); } } extern "C" void* leak_calloc(size_t n_elements, size_t elem_size) { if (DebugCallsDisabled()) { return g_malloc_dispatch->calloc(n_elements, elem_size); } // Fail on overflow - just to be safe even though this code runs only // within the debugging C library, not the production one. if (n_elements && SIZE_MAX / n_elements < elem_size) { errno = ENOMEM; return NULL; } size_t size = n_elements * elem_size; void* ptr = leak_malloc(size); if (ptr != NULL) { memset(ptr, 0, size); } return ptr; } extern "C" size_t leak_malloc_usable_size(const void* mem) { if (DebugCallsDisabled()) { return g_malloc_dispatch->malloc_usable_size(mem); } if (mem == NULL) { return 0; } // Check the guard to make sure it is valid. const AllocationEntry* header = const_to_header(mem); if (header->guard == MEMALIGN_GUARD) { // If this is a memalign'd pointer, then grab the header from // entry. header = const_to_header(header->entry); } else if (header->guard != GUARD) { debug_log("WARNING bad header guard: '0x%x'! and invalid entry: %p\n", header->guard, header->entry); return 0; } size_t ret = g_malloc_dispatch->malloc_usable_size(header); if (ret != 0) { // The usable area starts at 'mem' and stops at 'header+ret'. return reinterpret_cast(header) + ret - reinterpret_cast(mem); } return 0; } extern "C" void* leak_realloc(void* oldMem, size_t bytes) { if (DebugCallsDisabled()) { return g_malloc_dispatch->realloc(oldMem, bytes); } if (oldMem == NULL) { return leak_malloc(bytes); } void* newMem = NULL; AllocationEntry* header = to_header(oldMem); if (header->guard == MEMALIGN_GUARD) { // Get the real header. header = to_header(header->entry); } else if (header->guard != GUARD) { debug_log("WARNING bad header guard: '0x%x'! and invalid entry: %p\n", header->guard, header->entry); errno = ENOMEM; return NULL; } newMem = leak_malloc(bytes); if (newMem != NULL) { size_t oldSize = leak_malloc_usable_size(oldMem); size_t copySize = (oldSize <= bytes) ? oldSize : bytes; memcpy(newMem, oldMem, copySize); leak_free(oldMem); } return newMem; } extern "C" void* leak_memalign(size_t alignment, size_t bytes) { if (DebugCallsDisabled()) { return g_malloc_dispatch->memalign(alignment, bytes); } // we can just use malloc if (alignment <= MALLOC_ALIGNMENT) { return leak_malloc(bytes); } // need to make sure it's a power of two if (!powerof2(alignment)) { alignment = BIONIC_ROUND_UP_POWER_OF_2(alignment); } // here, alignment is at least MALLOC_ALIGNMENT<<1 bytes // we will align by at least MALLOC_ALIGNMENT bytes // and at most alignment-MALLOC_ALIGNMENT bytes size_t size = (alignment-MALLOC_ALIGNMENT) + bytes; if (size < bytes) { // Overflow. return NULL; } void* base = leak_malloc(size); if (base != NULL) { uintptr_t ptr = reinterpret_cast(base); if ((ptr % alignment) == 0) { return base; } // align the pointer ptr += ((-ptr) % alignment); // Already allocated enough space for the header. This assumes // that the malloc alignment is at least 8, otherwise, this is // not guaranteed to have the space for the header. AllocationEntry* header = to_header(reinterpret_cast(ptr)); header->guard = MEMALIGN_GUARD; header->entry = reinterpret_cast(base); return reinterpret_cast(ptr); } return base; } extern "C" struct mallinfo leak_mallinfo() { return g_malloc_dispatch->mallinfo(); } extern "C" int leak_posix_memalign(void** memptr, size_t alignment, size_t size) { if (DebugCallsDisabled()) { return g_malloc_dispatch->posix_memalign(memptr, alignment, size); } if (!powerof2(alignment)) { return EINVAL; } int saved_errno = errno; *memptr = leak_memalign(alignment, size); errno = saved_errno; return (*memptr != NULL) ? 0 : ENOMEM; } #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) extern "C" void* leak_pvalloc(size_t bytes) { if (DebugCallsDisabled()) { return g_malloc_dispatch->pvalloc(bytes); } size_t pagesize = getpagesize(); size_t size = BIONIC_ALIGN(bytes, pagesize); if (size < bytes) { // Overflow return NULL; } return leak_memalign(pagesize, size); } extern "C" void* leak_valloc(size_t size) { if (DebugCallsDisabled()) { return g_malloc_dispatch->valloc(size); } return leak_memalign(getpagesize(), size); } #endif