platform_bionic/linker/linker_soinfo.cpp
Elliott Hughes 01be44d2f8 Inline call_array for clearer stack traces.
No-one seems to understand that a crash in a random .so from call_array()
in the linker isn't a linker bug. They _seem_ to understand (or at least
claim to) when we explain that this is just the linker calling their ELF
constructors --- despite the fact that the caller of call_array() is
call_constructors().

One experiment we can try though is to inline call_array() to elide that
frame from the crash dumps. I do also wonder whether renaming
call_constructors() to call_elf_constructors() would help/hinder/make no
difference. For now I'm leaning toward "hinder" because I suspect most
people don't understand "ELF constructor" and C++ folks at least will
probably be influenced in a not wholly incorrect direction when they
hear "constructor" (whereas "ELF constructor" might mislead them back in
the direction of "strange linker magic, not my fault" again)...

(The reformatting is clang-format's decision, not mine.)

Test: treehugger
Change-Id: I65ab95ceb2e988fd053c48c66f51afba17ccfa61
2021-01-19 09:47:50 -08:00

950 lines
27 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "linker_soinfo.h"
#include <dlfcn.h>
#include <elf.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <async_safe/log.h>
#include "linker.h"
#include "linker_config.h"
#include "linker_debug.h"
#include "linker_globals.h"
#include "linker_gnu_hash.h"
#include "linker_logger.h"
#include "linker_relocate.h"
#include "linker_utils.h"
// Enable the slow lookup path if symbol lookups should be logged.
static bool is_lookup_tracing_enabled() {
return g_ld_debug_verbosity > LINKER_VERBOSITY_TRACE && DO_TRACE_LOOKUP;
}
SymbolLookupList::SymbolLookupList(soinfo* si)
: sole_lib_(si->get_lookup_lib()), begin_(&sole_lib_), end_(&sole_lib_ + 1) {
CHECK(si != nullptr);
slow_path_count_ += is_lookup_tracing_enabled();
slow_path_count_ += sole_lib_.needs_sysv_lookup();
}
SymbolLookupList::SymbolLookupList(const soinfo_list_t& global_group, const soinfo_list_t& local_group) {
slow_path_count_ += is_lookup_tracing_enabled();
libs_.reserve(1 + global_group.size() + local_group.size());
// Reserve a space in front for DT_SYMBOLIC lookup.
libs_.push_back(SymbolLookupLib {});
global_group.for_each([this](soinfo* si) {
libs_.push_back(si->get_lookup_lib());
slow_path_count_ += libs_.back().needs_sysv_lookup();
});
local_group.for_each([this](soinfo* si) {
libs_.push_back(si->get_lookup_lib());
slow_path_count_ += libs_.back().needs_sysv_lookup();
});
begin_ = &libs_[1];
end_ = &libs_[0] + libs_.size();
}
/* "This element's presence in a shared object library alters the dynamic linker's
* symbol resolution algorithm for references within the library. Instead of starting
* a symbol search with the executable file, the dynamic linker starts from the shared
* object itself. If the shared object fails to supply the referenced symbol, the
* dynamic linker then searches the executable file and other shared objects as usual."
*
* http://www.sco.com/developers/gabi/2012-12-31/ch5.dynamic.html
*
* Note that this is unlikely since static linker avoids generating
* relocations for -Bsymbolic linked dynamic executables.
*/
void SymbolLookupList::set_dt_symbolic_lib(soinfo* lib) {
CHECK(!libs_.empty());
slow_path_count_ -= libs_[0].needs_sysv_lookup();
libs_[0] = lib ? lib->get_lookup_lib() : SymbolLookupLib();
slow_path_count_ += libs_[0].needs_sysv_lookup();
begin_ = lib ? &libs_[0] : &libs_[1];
}
// Check whether a requested version matches the version on a symbol definition. There are a few
// special cases:
// - If the defining DSO has no version info at all, then any version matches.
// - If no version is requested (vi==nullptr, verneed==kVersymNotNeeded), then any non-hidden
// version matches.
// - If the requested version is not defined by the DSO, then verneed is kVersymGlobal, and only
// global symbol definitions match. (This special case is handled as part of the ordinary case
// where the version must match exactly.)
static inline bool check_symbol_version(const ElfW(Versym)* ver_table, uint32_t sym_idx,
const ElfW(Versym) verneed) {
if (ver_table == nullptr) return true;
const uint32_t verdef = ver_table[sym_idx];
return (verneed == kVersymNotNeeded) ?
!(verdef & kVersymHiddenBit) :
verneed == (verdef & ~kVersymHiddenBit);
}
template <bool IsGeneral>
__attribute__((noinline)) static const ElfW(Sym)*
soinfo_do_lookup_impl(const char* name, const version_info* vi,
soinfo** si_found_in, const SymbolLookupList& lookup_list) {
const auto [ hash, name_len ] = calculate_gnu_hash(name);
constexpr uint32_t kBloomMaskBits = sizeof(ElfW(Addr)) * 8;
SymbolName elf_symbol_name(name);
const SymbolLookupLib* end = lookup_list.end();
const SymbolLookupLib* it = lookup_list.begin();
while (true) {
const SymbolLookupLib* lib;
uint32_t sym_idx;
// Iterate over libraries until we find one whose Bloom filter matches the symbol we're
// searching for.
while (true) {
if (it == end) return nullptr;
lib = it++;
if (IsGeneral && lib->needs_sysv_lookup()) {
if (const ElfW(Sym)* sym = lib->si_->find_symbol_by_name(elf_symbol_name, vi)) {
*si_found_in = lib->si_;
return sym;
}
continue;
}
if (IsGeneral) {
TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p (gnu)",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(lib->si_->base));
}
const uint32_t word_num = (hash / kBloomMaskBits) & lib->gnu_maskwords_;
const ElfW(Addr) bloom_word = lib->gnu_bloom_filter_[word_num];
const uint32_t h1 = hash % kBloomMaskBits;
const uint32_t h2 = (hash >> lib->gnu_shift2_) % kBloomMaskBits;
if ((1 & (bloom_word >> h1) & (bloom_word >> h2)) == 1) {
sym_idx = lib->gnu_bucket_[hash % lib->gnu_nbucket_];
if (sym_idx != 0) {
break;
}
}
if (IsGeneral) {
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(lib->si_->base));
}
}
// Search the library's hash table chain.
ElfW(Versym) verneed = kVersymNotNeeded;
bool calculated_verneed = false;
uint32_t chain_value = 0;
const ElfW(Sym)* sym = nullptr;
do {
sym = lib->symtab_ + sym_idx;
chain_value = lib->gnu_chain_[sym_idx];
if ((chain_value >> 1) == (hash >> 1)) {
if (vi != nullptr && !calculated_verneed) {
calculated_verneed = true;
verneed = find_verdef_version_index(lib->si_, vi);
}
if (check_symbol_version(lib->versym_, sym_idx, verneed) &&
static_cast<size_t>(sym->st_name) + name_len + 1 <= lib->strtab_size_ &&
memcmp(lib->strtab_ + sym->st_name, name, name_len + 1) == 0 &&
is_symbol_global_and_defined(lib->si_, sym)) {
*si_found_in = lib->si_;
if (IsGeneral) {
TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(sym->st_value),
static_cast<size_t>(sym->st_size));
}
return sym;
}
}
++sym_idx;
} while ((chain_value & 1) == 0);
if (IsGeneral) {
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p",
name, lib->si_->get_realpath(), reinterpret_cast<void*>(lib->si_->base));
}
}
}
const ElfW(Sym)* soinfo_do_lookup(const char* name, const version_info* vi,
soinfo** si_found_in, const SymbolLookupList& lookup_list) {
return lookup_list.needs_slow_path() ?
soinfo_do_lookup_impl<true>(name, vi, si_found_in, lookup_list) :
soinfo_do_lookup_impl<false>(name, vi, si_found_in, lookup_list);
}
soinfo::soinfo(android_namespace_t* ns, const char* realpath,
const struct stat* file_stat, off64_t file_offset,
int rtld_flags) {
memset(this, 0, sizeof(*this));
if (realpath != nullptr) {
realpath_ = realpath;
}
flags_ = FLAG_NEW_SOINFO;
version_ = SOINFO_VERSION;
if (file_stat != nullptr) {
this->st_dev_ = file_stat->st_dev;
this->st_ino_ = file_stat->st_ino;
this->file_offset_ = file_offset;
}
this->rtld_flags_ = rtld_flags;
this->primary_namespace_ = ns;
}
soinfo::~soinfo() {
g_soinfo_handles_map.erase(handle_);
}
void soinfo::set_dt_runpath(const char* path) {
if (!has_min_version(3)) {
return;
}
std::vector<std::string> runpaths;
split_path(path, ":", &runpaths);
std::string origin = dirname(get_realpath());
// FIXME: add $PLATFORM.
std::vector<std::pair<std::string, std::string>> params = {
{"ORIGIN", origin},
{"LIB", kLibPath},
};
for (auto&& s : runpaths) {
format_string(&s, params);
}
resolve_paths(runpaths, &dt_runpath_);
}
const ElfW(Versym)* soinfo::get_versym(size_t n) const {
auto table = get_versym_table();
return table ? table + n : nullptr;
}
ElfW(Addr) soinfo::get_verneed_ptr() const {
if (has_min_version(2)) {
return verneed_ptr_;
}
return 0;
}
size_t soinfo::get_verneed_cnt() const {
if (has_min_version(2)) {
return verneed_cnt_;
}
return 0;
}
ElfW(Addr) soinfo::get_verdef_ptr() const {
if (has_min_version(2)) {
return verdef_ptr_;
}
return 0;
}
size_t soinfo::get_verdef_cnt() const {
if (has_min_version(2)) {
return verdef_cnt_;
}
return 0;
}
SymbolLookupLib soinfo::get_lookup_lib() {
SymbolLookupLib result {};
result.si_ = this;
// For libs that only have SysV hashes, leave the gnu_bloom_filter_ field NULL to signal that
// the fallback code path is needed.
if (!is_gnu_hash()) {
return result;
}
result.gnu_maskwords_ = gnu_maskwords_;
result.gnu_shift2_ = gnu_shift2_;
result.gnu_bloom_filter_ = gnu_bloom_filter_;
result.strtab_ = strtab_;
result.strtab_size_ = strtab_size_;
result.symtab_ = symtab_;
result.versym_ = get_versym_table();
result.gnu_chain_ = gnu_chain_;
result.gnu_nbucket_ = gnu_nbucket_;
result.gnu_bucket_ = gnu_bucket_;
return result;
}
const ElfW(Sym)* soinfo::find_symbol_by_name(SymbolName& symbol_name,
const version_info* vi) const {
return is_gnu_hash() ? gnu_lookup(symbol_name, vi) : elf_lookup(symbol_name, vi);
}
const ElfW(Sym)* soinfo::gnu_lookup(SymbolName& symbol_name, const version_info* vi) const {
const uint32_t hash = symbol_name.gnu_hash();
constexpr uint32_t kBloomMaskBits = sizeof(ElfW(Addr)) * 8;
const uint32_t word_num = (hash / kBloomMaskBits) & gnu_maskwords_;
const ElfW(Addr) bloom_word = gnu_bloom_filter_[word_num];
const uint32_t h1 = hash % kBloomMaskBits;
const uint32_t h2 = (hash >> gnu_shift2_) % kBloomMaskBits;
TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p (gnu)",
symbol_name.get_name(), get_realpath(), reinterpret_cast<void*>(base));
// test against bloom filter
if ((1 & (bloom_word >> h1) & (bloom_word >> h2)) == 0) {
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p",
symbol_name.get_name(), get_realpath(), reinterpret_cast<void*>(base));
return nullptr;
}
// bloom test says "probably yes"...
uint32_t n = gnu_bucket_[hash % gnu_nbucket_];
if (n == 0) {
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p",
symbol_name.get_name(), get_realpath(), reinterpret_cast<void*>(base));
return nullptr;
}
const ElfW(Versym) verneed = find_verdef_version_index(this, vi);
const ElfW(Versym)* versym = get_versym_table();
do {
ElfW(Sym)* s = symtab_ + n;
if (((gnu_chain_[n] ^ hash) >> 1) == 0 &&
check_symbol_version(versym, n, verneed) &&
strcmp(get_string(s->st_name), symbol_name.get_name()) == 0 &&
is_symbol_global_and_defined(this, s)) {
TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd",
symbol_name.get_name(), get_realpath(), reinterpret_cast<void*>(s->st_value),
static_cast<size_t>(s->st_size));
return symtab_ + n;
}
} while ((gnu_chain_[n++] & 1) == 0);
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p",
symbol_name.get_name(), get_realpath(), reinterpret_cast<void*>(base));
return nullptr;
}
const ElfW(Sym)* soinfo::elf_lookup(SymbolName& symbol_name, const version_info* vi) const {
uint32_t hash = symbol_name.elf_hash();
TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p h=%x(elf) %zd",
symbol_name.get_name(), get_realpath(),
reinterpret_cast<void*>(base), hash, hash % nbucket_);
const ElfW(Versym) verneed = find_verdef_version_index(this, vi);
const ElfW(Versym)* versym = get_versym_table();
for (uint32_t n = bucket_[hash % nbucket_]; n != 0; n = chain_[n]) {
ElfW(Sym)* s = symtab_ + n;
if (check_symbol_version(versym, n, verneed) &&
strcmp(get_string(s->st_name), symbol_name.get_name()) == 0 &&
is_symbol_global_and_defined(this, s)) {
TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd",
symbol_name.get_name(), get_realpath(),
reinterpret_cast<void*>(s->st_value),
static_cast<size_t>(s->st_size));
return symtab_ + n;
}
}
TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p %x %zd",
symbol_name.get_name(), get_realpath(),
reinterpret_cast<void*>(base), hash, hash % nbucket_);
return nullptr;
}
ElfW(Sym)* soinfo::find_symbol_by_address(const void* addr) {
return is_gnu_hash() ? gnu_addr_lookup(addr) : elf_addr_lookup(addr);
}
static bool symbol_matches_soaddr(const ElfW(Sym)* sym, ElfW(Addr) soaddr) {
// Skip TLS symbols. A TLS symbol's value is relative to the start of the TLS segment rather than
// to the start of the solib. The solib only reserves space for the initialized part of the TLS
// segment. (i.e. .tdata is followed by .tbss, and .tbss overlaps other sections.)
return sym->st_shndx != SHN_UNDEF &&
ELF_ST_TYPE(sym->st_info) != STT_TLS &&
soaddr >= sym->st_value &&
soaddr < sym->st_value + sym->st_size;
}
ElfW(Sym)* soinfo::gnu_addr_lookup(const void* addr) {
ElfW(Addr) soaddr = reinterpret_cast<ElfW(Addr)>(addr) - load_bias;
for (size_t i = 0; i < gnu_nbucket_; ++i) {
uint32_t n = gnu_bucket_[i];
if (n == 0) {
continue;
}
do {
ElfW(Sym)* sym = symtab_ + n;
if (symbol_matches_soaddr(sym, soaddr)) {
return sym;
}
} while ((gnu_chain_[n++] & 1) == 0);
}
return nullptr;
}
ElfW(Sym)* soinfo::elf_addr_lookup(const void* addr) {
ElfW(Addr) soaddr = reinterpret_cast<ElfW(Addr)>(addr) - load_bias;
// Search the library's symbol table for any defined symbol which
// contains this address.
for (size_t i = 0; i < nchain_; ++i) {
ElfW(Sym)* sym = symtab_ + i;
if (symbol_matches_soaddr(sym, soaddr)) {
return sym;
}
}
return nullptr;
}
static void call_function(const char* function_name __unused,
linker_ctor_function_t function,
const char* realpath __unused) {
if (function == nullptr || reinterpret_cast<uintptr_t>(function) == static_cast<uintptr_t>(-1)) {
return;
}
TRACE("[ Calling c-tor %s @ %p for '%s' ]", function_name, function, realpath);
function(g_argc, g_argv, g_envp);
TRACE("[ Done calling c-tor %s @ %p for '%s' ]", function_name, function, realpath);
}
static void call_function(const char* function_name __unused,
linker_dtor_function_t function,
const char* realpath __unused) {
if (function == nullptr || reinterpret_cast<uintptr_t>(function) == static_cast<uintptr_t>(-1)) {
return;
}
TRACE("[ Calling d-tor %s @ %p for '%s' ]", function_name, function, realpath);
function();
TRACE("[ Done calling d-tor %s @ %p for '%s' ]", function_name, function, realpath);
}
template <typename F>
static inline void call_array(const char* array_name __unused, F* functions, size_t count,
bool reverse, const char* realpath) {
if (functions == nullptr) {
return;
}
TRACE("[ Calling %s (size %zd) @ %p for '%s' ]", array_name, count, functions, realpath);
int begin = reverse ? (count - 1) : 0;
int end = reverse ? -1 : count;
int step = reverse ? -1 : 1;
for (int i = begin; i != end; i += step) {
TRACE("[ %s[%d] == %p ]", array_name, i, functions[i]);
call_function("function", functions[i], realpath);
}
TRACE("[ Done calling %s for '%s' ]", array_name, realpath);
}
void soinfo::call_pre_init_constructors() {
if (g_is_ldd) return;
// DT_PREINIT_ARRAY functions are called before any other constructors for executables,
// but ignored in a shared library.
call_array("DT_PREINIT_ARRAY", preinit_array_, preinit_array_count_, false, get_realpath());
}
void soinfo::call_constructors() {
if (constructors_called || g_is_ldd) {
return;
}
// We set constructors_called before actually calling the constructors, otherwise it doesn't
// protect against recursive constructor calls. One simple example of constructor recursion
// is the libc debug malloc, which is implemented in libc_malloc_debug_leak.so:
// 1. The program depends on libc, so libc's constructor is called here.
// 2. The libc constructor calls dlopen() to load libc_malloc_debug_leak.so.
// 3. dlopen() calls the constructors on the newly created
// soinfo for libc_malloc_debug_leak.so.
// 4. The debug .so depends on libc, so CallConstructors is
// called again with the libc soinfo. If it doesn't trigger the early-
// out above, the libc constructor will be called again (recursively!).
constructors_called = true;
if (!is_main_executable() && preinit_array_ != nullptr) {
// The GNU dynamic linker silently ignores these, but we warn the developer.
PRINT("\"%s\": ignoring DT_PREINIT_ARRAY in shared library!", get_realpath());
}
get_children().for_each([] (soinfo* si) {
si->call_constructors();
});
if (!is_linker()) {
bionic_trace_begin((std::string("calling constructors: ") + get_realpath()).c_str());
}
// DT_INIT should be called before DT_INIT_ARRAY if both are present.
call_function("DT_INIT", init_func_, get_realpath());
call_array("DT_INIT_ARRAY", init_array_, init_array_count_, false, get_realpath());
if (!is_linker()) {
bionic_trace_end();
}
}
void soinfo::call_destructors() {
if (!constructors_called) {
return;
}
ScopedTrace trace((std::string("calling destructors: ") + get_realpath()).c_str());
// DT_FINI_ARRAY must be parsed in reverse order.
call_array("DT_FINI_ARRAY", fini_array_, fini_array_count_, true, get_realpath());
// DT_FINI should be called after DT_FINI_ARRAY if both are present.
call_function("DT_FINI", fini_func_, get_realpath());
}
void soinfo::add_child(soinfo* child) {
if (has_min_version(0)) {
child->parents_.push_back(this);
this->children_.push_back(child);
}
}
void soinfo::remove_all_links() {
if (!has_min_version(0)) {
return;
}
// 1. Untie connected soinfos from 'this'.
children_.for_each([&] (soinfo* child) {
child->parents_.remove_if([&] (const soinfo* parent) {
return parent == this;
});
});
parents_.for_each([&] (soinfo* parent) {
parent->children_.remove_if([&] (const soinfo* child) {
return child == this;
});
});
// 2. Remove from the primary namespace
primary_namespace_->remove_soinfo(this);
primary_namespace_ = nullptr;
// 3. Remove from secondary namespaces
secondary_namespaces_.for_each([&](android_namespace_t* ns) {
ns->remove_soinfo(this);
});
// 4. Once everything untied - clear local lists.
parents_.clear();
children_.clear();
secondary_namespaces_.clear();
}
dev_t soinfo::get_st_dev() const {
if (has_min_version(0)) {
return st_dev_;
}
return 0;
};
ino_t soinfo::get_st_ino() const {
if (has_min_version(0)) {
return st_ino_;
}
return 0;
}
off64_t soinfo::get_file_offset() const {
if (has_min_version(1)) {
return file_offset_;
}
return 0;
}
uint32_t soinfo::get_rtld_flags() const {
if (has_min_version(1)) {
return rtld_flags_;
}
return 0;
}
uint32_t soinfo::get_dt_flags_1() const {
if (has_min_version(1)) {
return dt_flags_1_;
}
return 0;
}
void soinfo::set_dt_flags_1(uint32_t dt_flags_1) {
if (has_min_version(1)) {
if ((dt_flags_1 & DF_1_GLOBAL) != 0) {
rtld_flags_ |= RTLD_GLOBAL;
}
if ((dt_flags_1 & DF_1_NODELETE) != 0) {
rtld_flags_ |= RTLD_NODELETE;
}
dt_flags_1_ = dt_flags_1;
}
}
void soinfo::set_nodelete() {
rtld_flags_ |= RTLD_NODELETE;
}
void soinfo::set_realpath(const char* path) {
#if defined(__work_around_b_24465209__)
if (has_min_version(2)) {
realpath_ = path;
}
#else
realpath_ = path;
#endif
}
const char* soinfo::get_realpath() const {
#if defined(__work_around_b_24465209__)
if (has_min_version(2)) {
return realpath_.c_str();
} else {
return old_name_;
}
#else
return realpath_.c_str();
#endif
}
void soinfo::set_soname(const char* soname) {
#if defined(__work_around_b_24465209__)
if (has_min_version(2)) {
soname_ = soname;
}
strlcpy(old_name_, soname_.c_str(), sizeof(old_name_));
#else
soname_ = soname;
#endif
}
const char* soinfo::get_soname() const {
#if defined(__work_around_b_24465209__)
if (has_min_version(2)) {
return soname_.c_str();
} else {
return old_name_;
}
#else
return soname_.c_str();
#endif
}
// This is a return on get_children()/get_parents() if
// 'this->flags' does not have FLAG_NEW_SOINFO set.
static soinfo_list_t g_empty_list;
soinfo_list_t& soinfo::get_children() {
if (has_min_version(0)) {
return children_;
}
return g_empty_list;
}
const soinfo_list_t& soinfo::get_children() const {
if (has_min_version(0)) {
return children_;
}
return g_empty_list;
}
soinfo_list_t& soinfo::get_parents() {
if (has_min_version(0)) {
return parents_;
}
return g_empty_list;
}
static std::vector<std::string> g_empty_runpath;
const std::vector<std::string>& soinfo::get_dt_runpath() const {
if (has_min_version(3)) {
return dt_runpath_;
}
return g_empty_runpath;
}
android_namespace_t* soinfo::get_primary_namespace() {
if (has_min_version(3)) {
return primary_namespace_;
}
return &g_default_namespace;
}
void soinfo::add_secondary_namespace(android_namespace_t* secondary_ns) {
CHECK(has_min_version(3));
secondary_namespaces_.push_back(secondary_ns);
}
android_namespace_list_t& soinfo::get_secondary_namespaces() {
CHECK(has_min_version(3));
return secondary_namespaces_;
}
const char* soinfo::get_string(ElfW(Word) index) const {
if (has_min_version(1) && (index >= strtab_size_)) {
async_safe_fatal("%s: strtab out of bounds error; STRSZ=%zd, name=%d",
get_realpath(), strtab_size_, index);
}
return strtab_ + index;
}
bool soinfo::is_gnu_hash() const {
return (flags_ & FLAG_GNU_HASH) != 0;
}
bool soinfo::can_unload() const {
return !is_linked() ||
(
(get_rtld_flags() & (RTLD_NODELETE | RTLD_GLOBAL)) == 0
);
}
bool soinfo::is_linked() const {
return (flags_ & FLAG_LINKED) != 0;
}
bool soinfo::is_image_linked() const {
return (flags_ & FLAG_IMAGE_LINKED) != 0;
}
bool soinfo::is_main_executable() const {
return (flags_ & FLAG_EXE) != 0;
}
bool soinfo::is_linker() const {
return (flags_ & FLAG_LINKER) != 0;
}
void soinfo::set_linked() {
flags_ |= FLAG_LINKED;
}
void soinfo::set_image_linked() {
flags_ |= FLAG_IMAGE_LINKED;
}
void soinfo::set_linker_flag() {
flags_ |= FLAG_LINKER;
}
void soinfo::set_main_executable() {
flags_ |= FLAG_EXE;
}
size_t soinfo::increment_ref_count() {
return ++local_group_root_->ref_count_;
}
size_t soinfo::decrement_ref_count() {
return --local_group_root_->ref_count_;
}
size_t soinfo::get_ref_count() const {
return local_group_root_->ref_count_;
}
soinfo* soinfo::get_local_group_root() const {
return local_group_root_;
}
void soinfo::set_mapped_by_caller(bool mapped_by_caller) {
if (mapped_by_caller) {
flags_ |= FLAG_MAPPED_BY_CALLER;
} else {
flags_ &= ~FLAG_MAPPED_BY_CALLER;
}
}
bool soinfo::is_mapped_by_caller() const {
return (flags_ & FLAG_MAPPED_BY_CALLER) != 0;
}
// This function returns api-level at the time of
// dlopen/load. Note that libraries opened by system
// will always have 'current' api level.
int soinfo::get_target_sdk_version() const {
if (!has_min_version(2)) {
return __ANDROID_API__;
}
return local_group_root_->target_sdk_version_;
}
uintptr_t soinfo::get_handle() const {
CHECK(has_min_version(3));
CHECK(handle_ != 0);
return handle_;
}
void* soinfo::to_handle() {
if (get_application_target_sdk_version() < 24 || !has_min_version(3)) {
return this;
}
return reinterpret_cast<void*>(get_handle());
}
void soinfo::generate_handle() {
CHECK(has_min_version(3));
CHECK(handle_ == 0); // Make sure this is the first call
// Make sure the handle is unique and does not collide
// with special values which are RTLD_DEFAULT and RTLD_NEXT.
do {
if (!is_first_stage_init()) {
arc4random_buf(&handle_, sizeof(handle_));
} else {
// arc4random* is not available in init because /dev/urandom hasn't yet been
// created. So, when running with init, use the monotonically increasing
// numbers as handles
handle_ += 2;
}
// the least significant bit for the handle is always 1
// making it easy to test the type of handle passed to
// dl* functions.
handle_ = handle_ | 1;
} while (handle_ == reinterpret_cast<uintptr_t>(RTLD_DEFAULT) ||
handle_ == reinterpret_cast<uintptr_t>(RTLD_NEXT) ||
g_soinfo_handles_map.find(handle_) != g_soinfo_handles_map.end());
g_soinfo_handles_map[handle_] = this;
}
void soinfo::set_gap_start(ElfW(Addr) gap_start) {
CHECK(has_min_version(6));
gap_start_ = gap_start;
}
ElfW(Addr) soinfo::get_gap_start() const {
CHECK(has_min_version(6));
return gap_start_;
}
void soinfo::set_gap_size(size_t gap_size) {
CHECK(has_min_version(6));
gap_size_ = gap_size;
}
size_t soinfo::get_gap_size() const {
CHECK(has_min_version(6));
return gap_size_;
}
// TODO(dimitry): Move SymbolName methods to a separate file.
uint32_t calculate_elf_hash(const char* name) {
const uint8_t* name_bytes = reinterpret_cast<const uint8_t*>(name);
uint32_t h = 0, g;
while (*name_bytes) {
h = (h << 4) + *name_bytes++;
g = h & 0xf0000000;
h ^= g;
h ^= g >> 24;
}
return h;
}
uint32_t SymbolName::elf_hash() {
if (!has_elf_hash_) {
elf_hash_ = calculate_elf_hash(name_);
has_elf_hash_ = true;
}
return elf_hash_;
}
uint32_t SymbolName::gnu_hash() {
if (!has_gnu_hash_) {
gnu_hash_ = calculate_gnu_hash(name_).first;
has_gnu_hash_ = true;
}
return gnu_hash_;
}