platform_bionic/linker/linker_relocate.cpp
Kalesh Singh 944164c5e2 RELAND: bionic: loader: Extend LOAD segment VMAs
When the page_size < p_align of the ELF load segment, the loader
will end up creating extra PROT_NONE gap VMA mappings between the
LOAD segments. This problem is exacerbated by Android's zygote
model, where the number of loaded .so's can lead to ~30MB increase
in vm_area_struct unreclaimable slab memory.

Extend the LOAD segment VMA's to cover the range between the
segment's end and the start of the next segment, being careful
to avoid touching regions of the extended mapping where the offset
would overrun the size of the file. This avoids the loader
creating an additional gap VMA for each LOAD segment.

Consider a system with 4KB page size and the ELF files with 64K
alignment. e.g:

$ readelf -Wl /system/lib64/bootstrap/libc.so | grep 'Type\|LOAD'

Type           Offset   VirtAddr           PhysAddr           FileSiz  MemSiz   Flg Align
LOAD           0x000000 0x0000000000000000 0x0000000000000000 0x0441a8 0x0441a8 R   0x10000
LOAD           0x0441b0 0x00000000000541b0 0x00000000000541b0 0x091860 0x091860 R E 0x10000
LOAD           0x0d5a10 0x00000000000f5a10 0x00000000000f5a10 0x003d40 0x003d40 RW  0x10000
LOAD           0x0d9760 0x0000000000109760 0x0000000000109760 0x0005c0 0x459844 RW  0x10000

Before this patch:

$ cat /proc/1/maps | grep -A1 libc.so

7fa1d4a90000-7fa1d4ad5000 r--p 00000000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7fa1d4ad5000-7fa1d4ae4000 ---p 00000000 00:00 0
7fa1d4ae4000-7fa1d4b76000 r-xp 00044000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7fa1d4b76000-7fa1d4b85000 ---p 00000000 00:00 0
7fa1d4b85000-7fa1d4b8a000 r--p 000d5000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7fa1d4b8a000-7fa1d4b99000 ---p 00000000 00:00 0
7fa1d4b99000-7fa1d4b9a000 rw-p 000d9000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7fa1d4b9a000-7fa1d4feb000 rw-p 00000000 00:00 0                          [anon:.bss]

3 additional PROT_NONE (---p) VMAs for gap mappings.

After this patch:

$ cat /proc/1/maps | grep -A1 libc.so

7f468f069000-7f468f0bd000 r--p 00000000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7f468f0bd000-7f468f15e000 r-xp 00044000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7f468f15e000-7f468f163000 r--p 000d5000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7f468f163000-7f468f172000 rw-p 000da000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7f468f172000-7f468f173000 rw-p 000d9000 fe:09 20635520                   /system/lib64/bootstrap/libc.so
7f468f173000-7f468f5c4000 rw-p 00000000 00:00 0                          [anon:.bss]

No additional gap VMAs. However notice there is an extra RW VMA at
offset 0x000da000. This is caused by the RO protection of the
GNU_RELRO segment, which causes the extended RW VMA to split.
The GNU_RELRO protection extension is handled in the subsequent
patch in this series.

Bug: 316403210
Bug: 300367402
Bug: 307803052
Bug: 312550202
Test: atest -c linker-unit-tests
Test: atest -c bionic-unit-tests
Change-Id: I7150ed22af0723cc0b2d326c046e4e4a8b56ad09
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
2024-02-27 06:13:11 +00:00

675 lines
26 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "linker_relocate.h"
#include <elf.h>
#include <link.h>
#include <type_traits>
#include "linker.h"
#include "linker_debug.h"
#include "linker_globals.h"
#include "linker_gnu_hash.h"
#include "linker_phdr.h"
#include "linker_relocs.h"
#include "linker_reloc_iterators.h"
#include "linker_sleb128.h"
#include "linker_soinfo.h"
#include "private/bionic_globals.h"
static bool is_tls_reloc(ElfW(Word) type) {
switch (type) {
case R_GENERIC_TLS_DTPMOD:
case R_GENERIC_TLS_DTPREL:
case R_GENERIC_TLS_TPREL:
#if defined(R_GENERIC_TLSDESC)
case R_GENERIC_TLSDESC:
#endif
return true;
default:
return false;
}
}
class Relocator {
public:
Relocator(const VersionTracker& version_tracker, const SymbolLookupList& lookup_list)
: version_tracker(version_tracker), lookup_list(lookup_list)
{}
soinfo* si = nullptr;
const char* si_strtab = nullptr;
size_t si_strtab_size = 0;
ElfW(Sym)* si_symtab = nullptr;
const VersionTracker& version_tracker;
const SymbolLookupList& lookup_list;
// Cache key
ElfW(Word) cache_sym_val = 0;
// Cache value
const ElfW(Sym)* cache_sym = nullptr;
soinfo* cache_si = nullptr;
std::vector<TlsDynamicResolverArg>* tlsdesc_args;
std::vector<std::pair<TlsDescriptor*, size_t>> deferred_tlsdesc_relocs;
size_t tls_tp_base = 0;
__attribute__((always_inline))
const char* get_string(ElfW(Word) index) {
if (__predict_false(index >= si_strtab_size)) {
async_safe_fatal("%s: strtab out of bounds error; STRSZ=%zd, name=%d",
si->get_realpath(), si_strtab_size, index);
}
return si_strtab + index;
}
};
template <bool DoLogging>
__attribute__((always_inline))
static inline bool lookup_symbol(Relocator& relocator, uint32_t r_sym, const char* sym_name,
soinfo** found_in, const ElfW(Sym)** sym) {
if (r_sym == relocator.cache_sym_val) {
*found_in = relocator.cache_si;
*sym = relocator.cache_sym;
count_relocation_if<DoLogging>(kRelocSymbolCached);
} else {
const version_info* vi = nullptr;
if (!relocator.si->lookup_version_info(relocator.version_tracker, r_sym, sym_name, &vi)) {
return false;
}
soinfo* local_found_in = nullptr;
const ElfW(Sym)* local_sym = soinfo_do_lookup(sym_name, vi, &local_found_in, relocator.lookup_list);
relocator.cache_sym_val = r_sym;
relocator.cache_si = local_found_in;
relocator.cache_sym = local_sym;
*found_in = local_found_in;
*sym = local_sym;
}
if (*sym == nullptr) {
if (ELF_ST_BIND(relocator.si_symtab[r_sym].st_info) != STB_WEAK) {
DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, relocator.si->get_realpath());
return false;
}
}
count_relocation_if<DoLogging>(kRelocSymbol);
return true;
}
enum class RelocMode {
// Fast path for JUMP_SLOT relocations.
JumpTable,
// Fast path for typical relocations: ABSOLUTE, GLOB_DAT, or RELATIVE.
Typical,
// Handle all relocation types, relocations in text sections, and statistics/tracing.
General,
};
struct linker_stats_t {
int count[kRelocMax];
};
static linker_stats_t linker_stats;
void count_relocation(RelocationKind kind) {
++linker_stats.count[kind];
}
void print_linker_stats() {
PRINT("RELO STATS: %s: %d abs, %d rel, %d symbol (%d cached)",
g_argv[0],
linker_stats.count[kRelocAbsolute],
linker_stats.count[kRelocRelative],
linker_stats.count[kRelocSymbol],
linker_stats.count[kRelocSymbolCached]);
}
static bool process_relocation_general(Relocator& relocator, const rel_t& reloc);
template <RelocMode Mode>
__attribute__((always_inline))
static bool process_relocation_impl(Relocator& relocator, const rel_t& reloc) {
constexpr bool IsGeneral = Mode == RelocMode::General;
void* const rel_target = reinterpret_cast<void*>(reloc.r_offset + relocator.si->load_bias);
const uint32_t r_type = ELFW(R_TYPE)(reloc.r_info);
const uint32_t r_sym = ELFW(R_SYM)(reloc.r_info);
soinfo* found_in = nullptr;
const ElfW(Sym)* sym = nullptr;
const char* sym_name = nullptr;
ElfW(Addr) sym_addr = 0;
if (r_sym != 0) {
sym_name = relocator.get_string(relocator.si_symtab[r_sym].st_name);
}
// While relocating a DSO with text relocations (obsolete and 32-bit only), the .text segment is
// writable (but not executable). To call an ifunc, temporarily remap the segment as executable
// (but not writable). Then switch it back to continue applying relocations in the segment.
#if defined(__LP64__)
const bool handle_text_relocs = false;
auto protect_segments = []() { return true; };
auto unprotect_segments = []() { return true; };
#else
const bool handle_text_relocs = IsGeneral && relocator.si->has_text_relocations;
auto protect_segments = [&]() {
// Make .text executable.
if (phdr_table_protect_segments(relocator.si->phdr, relocator.si->phnum,
relocator.si->load_bias,
relocator.si->should_pad_segments()) < 0) {
DL_ERR("can't protect segments for \"%s\": %s",
relocator.si->get_realpath(), strerror(errno));
return false;
}
return true;
};
auto unprotect_segments = [&]() {
// Make .text writable.
if (phdr_table_unprotect_segments(relocator.si->phdr, relocator.si->phnum,
relocator.si->load_bias,
relocator.si->should_pad_segments()) < 0) {
DL_ERR("can't unprotect loadable segments for \"%s\": %s",
relocator.si->get_realpath(), strerror(errno));
return false;
}
return true;
};
#endif
auto trace_reloc = [](const char* fmt, ...) __printflike(2, 3) {
if (IsGeneral &&
g_ld_debug_verbosity > LINKER_VERBOSITY_TRACE &&
DO_TRACE_RELO) {
va_list ap;
va_start(ap, fmt);
linker_log_va_list(LINKER_VERBOSITY_TRACE, fmt, ap);
va_end(ap);
}
};
// Skip symbol lookup for R_GENERIC_NONE relocations.
if (__predict_false(r_type == R_GENERIC_NONE)) {
trace_reloc("RELO NONE");
return true;
}
#if defined(USE_RELA)
auto get_addend_rel = [&]() -> ElfW(Addr) { return reloc.r_addend; };
auto get_addend_norel = [&]() -> ElfW(Addr) { return reloc.r_addend; };
#else
auto get_addend_rel = [&]() -> ElfW(Addr) { return *static_cast<ElfW(Addr)*>(rel_target); };
auto get_addend_norel = [&]() -> ElfW(Addr) { return 0; };
#endif
if (!IsGeneral && __predict_false(is_tls_reloc(r_type))) {
// Always process TLS relocations using the slow code path, so that STB_LOCAL symbols are
// diagnosed, and ifunc processing is skipped.
return process_relocation_general(relocator, reloc);
}
if (IsGeneral && is_tls_reloc(r_type)) {
if (r_sym == 0) {
// By convention in ld.bfd and lld, an omitted symbol on a TLS relocation
// is a reference to the current module.
found_in = relocator.si;
} else if (ELF_ST_BIND(relocator.si_symtab[r_sym].st_info) == STB_LOCAL) {
// In certain situations, the Gold linker accesses a TLS symbol using a
// relocation to an STB_LOCAL symbol in .dynsym of either STT_SECTION or
// STT_TLS type. Bionic doesn't support these relocations, so issue an
// error. References:
// - https://groups.google.com/d/topic/generic-abi/dJ4_Y78aQ2M/discussion
// - https://sourceware.org/bugzilla/show_bug.cgi?id=17699
sym = &relocator.si_symtab[r_sym];
auto sym_type = ELF_ST_TYPE(sym->st_info);
if (sym_type == STT_SECTION) {
DL_ERR("unexpected TLS reference to local section in \"%s\": sym type %d, rel type %u",
relocator.si->get_realpath(), sym_type, r_type);
} else {
DL_ERR(
"unexpected TLS reference to local symbol \"%s\" in \"%s\": sym type %d, rel type %u",
sym_name, relocator.si->get_realpath(), sym_type, r_type);
}
return false;
} else if (!lookup_symbol<IsGeneral>(relocator, r_sym, sym_name, &found_in, &sym)) {
return false;
}
if (found_in != nullptr && found_in->get_tls() == nullptr) {
// sym_name can be nullptr if r_sym is 0. A linker should never output an ELF file like this.
DL_ERR("TLS relocation refers to symbol \"%s\" in solib \"%s\" with no TLS segment",
sym_name, found_in->get_realpath());
return false;
}
if (sym != nullptr) {
if (ELF_ST_TYPE(sym->st_info) != STT_TLS) {
// A toolchain should never output a relocation like this.
DL_ERR("reference to non-TLS symbol \"%s\" from TLS relocation in \"%s\"",
sym_name, relocator.si->get_realpath());
return false;
}
sym_addr = sym->st_value;
}
} else {
if (r_sym == 0) {
// Do nothing.
} else {
if (!lookup_symbol<IsGeneral>(relocator, r_sym, sym_name, &found_in, &sym)) return false;
if (sym != nullptr) {
const bool should_protect_segments = handle_text_relocs &&
found_in == relocator.si &&
ELF_ST_TYPE(sym->st_info) == STT_GNU_IFUNC;
if (should_protect_segments && !protect_segments()) return false;
sym_addr = found_in->resolve_symbol_address(sym);
if (should_protect_segments && !unprotect_segments()) return false;
} else if constexpr (IsGeneral) {
// A weak reference to an undefined symbol. We typically use a zero symbol address, but
// use the relocation base for PC-relative relocations, so that the value written is zero.
switch (r_type) {
#if defined(__x86_64__)
case R_X86_64_PC32:
sym_addr = reinterpret_cast<ElfW(Addr)>(rel_target);
break;
#elif defined(__i386__)
case R_386_PC32:
sym_addr = reinterpret_cast<ElfW(Addr)>(rel_target);
break;
#endif
}
}
}
}
if constexpr (IsGeneral || Mode == RelocMode::JumpTable) {
if (r_type == R_GENERIC_JUMP_SLOT) {
count_relocation_if<IsGeneral>(kRelocAbsolute);
const ElfW(Addr) result = sym_addr + get_addend_norel();
trace_reloc("RELO JMP_SLOT %16p <- %16p %s",
rel_target, reinterpret_cast<void*>(result), sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = result;
return true;
}
}
if constexpr (IsGeneral || Mode == RelocMode::Typical) {
// Almost all dynamic relocations are of one of these types, and most will be
// R_GENERIC_ABSOLUTE. The platform typically uses RELR instead, but R_GENERIC_RELATIVE is
// common in non-platform binaries.
if (r_type == R_GENERIC_ABSOLUTE) {
count_relocation_if<IsGeneral>(kRelocAbsolute);
const ElfW(Addr) result = sym_addr + get_addend_rel();
trace_reloc("RELO ABSOLUTE %16p <- %16p %s",
rel_target, reinterpret_cast<void*>(result), sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = result;
return true;
} else if (r_type == R_GENERIC_GLOB_DAT) {
// The i386 psABI specifies that R_386_GLOB_DAT doesn't have an addend. The ARM ELF ABI
// document (IHI0044F) specifies that R_ARM_GLOB_DAT has an addend, but Bionic isn't adding
// it.
count_relocation_if<IsGeneral>(kRelocAbsolute);
const ElfW(Addr) result = sym_addr + get_addend_norel();
trace_reloc("RELO GLOB_DAT %16p <- %16p %s",
rel_target, reinterpret_cast<void*>(result), sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = result;
return true;
} else if (r_type == R_GENERIC_RELATIVE) {
// In practice, r_sym is always zero, but if it weren't, the linker would still look up the
// referenced symbol (and abort if the symbol isn't found), even though it isn't used.
count_relocation_if<IsGeneral>(kRelocRelative);
const ElfW(Addr) result = relocator.si->load_bias + get_addend_rel();
trace_reloc("RELO RELATIVE %16p <- %16p",
rel_target, reinterpret_cast<void*>(result));
*static_cast<ElfW(Addr)*>(rel_target) = result;
return true;
}
}
if constexpr (!IsGeneral) {
// Almost all relocations are handled above. Handle the remaining relocations below, in a
// separate function call. The symbol lookup will be repeated, but the result should be served
// from the 1-symbol lookup cache.
return process_relocation_general(relocator, reloc);
}
switch (r_type) {
case R_GENERIC_IRELATIVE:
// In the linker, ifuncs are called as soon as possible so that string functions work. We must
// not call them again. (e.g. On arm32, resolving an ifunc changes the meaning of the addend
// from a resolver function to the implementation.)
if (!relocator.si->is_linker()) {
count_relocation_if<IsGeneral>(kRelocRelative);
const ElfW(Addr) ifunc_addr = relocator.si->load_bias + get_addend_rel();
trace_reloc("RELO IRELATIVE %16p <- %16p",
rel_target, reinterpret_cast<void*>(ifunc_addr));
if (handle_text_relocs && !protect_segments()) return false;
const ElfW(Addr) result = call_ifunc_resolver(ifunc_addr);
if (handle_text_relocs && !unprotect_segments()) return false;
*static_cast<ElfW(Addr)*>(rel_target) = result;
}
break;
case R_GENERIC_COPY:
// Copy relocations allow read-only data or code in a non-PIE executable to access a
// variable from a DSO. The executable reserves extra space in its .bss section, and the
// linker copies the variable into the extra space. The executable then exports its copy
// to interpose the copy in the DSO.
//
// Bionic only supports PIE executables, so copy relocations aren't supported. The ARM and
// AArch64 ABI documents only allow them for ET_EXEC (non-PIE) objects. See IHI0056B and
// IHI0044F.
DL_ERR("%s COPY relocations are not supported", relocator.si->get_realpath());
return false;
case R_GENERIC_TLS_TPREL:
count_relocation_if<IsGeneral>(kRelocRelative);
{
ElfW(Addr) tpoff = 0;
if (found_in == nullptr) {
// Unresolved weak relocation. Leave tpoff at 0 to resolve
// &weak_tls_symbol to __get_tls().
} else {
CHECK(found_in->get_tls() != nullptr); // We rejected a missing TLS segment above.
const TlsModule& mod = get_tls_module(found_in->get_tls()->module_id);
if (mod.static_offset != SIZE_MAX) {
tpoff += mod.static_offset - relocator.tls_tp_base;
} else {
DL_ERR("TLS symbol \"%s\" in dlopened \"%s\" referenced from \"%s\" using IE access model",
sym_name, found_in->get_realpath(), relocator.si->get_realpath());
return false;
}
}
tpoff += sym_addr + get_addend_rel();
trace_reloc("RELO TLS_TPREL %16p <- %16p %s",
rel_target, reinterpret_cast<void*>(tpoff), sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = tpoff;
}
break;
case R_GENERIC_TLS_DTPMOD:
count_relocation_if<IsGeneral>(kRelocRelative);
{
size_t module_id = 0;
if (found_in == nullptr) {
// Unresolved weak relocation. Evaluate the module ID to 0.
} else {
CHECK(found_in->get_tls() != nullptr); // We rejected a missing TLS segment above.
module_id = found_in->get_tls()->module_id;
}
trace_reloc("RELO TLS_DTPMOD %16p <- %zu %s",
rel_target, module_id, sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = module_id;
}
break;
case R_GENERIC_TLS_DTPREL:
count_relocation_if<IsGeneral>(kRelocRelative);
{
const ElfW(Addr) result = sym_addr + get_addend_rel() - TLS_DTV_OFFSET;
trace_reloc("RELO TLS_DTPREL %16p <- %16p %s",
rel_target, reinterpret_cast<void*>(result), sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = result;
}
break;
#if defined(__aarch64__)
// Bionic currently only implements TLSDESC for arm64. This implementation should work with
// other architectures, as long as the resolver functions are implemented.
case R_GENERIC_TLSDESC:
count_relocation_if<IsGeneral>(kRelocRelative);
{
ElfW(Addr) addend = reloc.r_addend;
TlsDescriptor* desc = static_cast<TlsDescriptor*>(rel_target);
if (found_in == nullptr) {
// Unresolved weak relocation.
desc->func = tlsdesc_resolver_unresolved_weak;
desc->arg = addend;
trace_reloc("RELO TLSDESC %16p <- unresolved weak, addend 0x%zx %s",
rel_target, static_cast<size_t>(addend), sym_name);
} else {
CHECK(found_in->get_tls() != nullptr); // We rejected a missing TLS segment above.
size_t module_id = found_in->get_tls()->module_id;
const TlsModule& mod = get_tls_module(module_id);
if (mod.static_offset != SIZE_MAX) {
desc->func = tlsdesc_resolver_static;
desc->arg = mod.static_offset - relocator.tls_tp_base + sym_addr + addend;
trace_reloc("RELO TLSDESC %16p <- static (0x%zx - 0x%zx + 0x%zx + 0x%zx) %s",
rel_target, mod.static_offset, relocator.tls_tp_base,
static_cast<size_t>(sym_addr), static_cast<size_t>(addend),
sym_name);
} else {
relocator.tlsdesc_args->push_back({
.generation = mod.first_generation,
.index.module_id = module_id,
.index.offset = sym_addr + addend,
});
// Defer the TLSDESC relocation until the address of the TlsDynamicResolverArg object
// is finalized.
relocator.deferred_tlsdesc_relocs.push_back({
desc, relocator.tlsdesc_args->size() - 1
});
const TlsDynamicResolverArg& desc_arg = relocator.tlsdesc_args->back();
trace_reloc("RELO TLSDESC %16p <- dynamic (gen %zu, mod %zu, off %zu) %s",
rel_target, desc_arg.generation, desc_arg.index.module_id,
desc_arg.index.offset, sym_name);
}
}
}
break;
#endif // defined(__aarch64__)
#if defined(__x86_64__)
case R_X86_64_32:
count_relocation_if<IsGeneral>(kRelocAbsolute);
{
const Elf32_Addr result = sym_addr + reloc.r_addend;
trace_reloc("RELO R_X86_64_32 %16p <- 0x%08x %s",
rel_target, result, sym_name);
*static_cast<Elf32_Addr*>(rel_target) = result;
}
break;
case R_X86_64_PC32:
count_relocation_if<IsGeneral>(kRelocRelative);
{
const ElfW(Addr) target = sym_addr + reloc.r_addend;
const ElfW(Addr) base = reinterpret_cast<ElfW(Addr)>(rel_target);
const Elf32_Addr result = target - base;
trace_reloc("RELO R_X86_64_PC32 %16p <- 0x%08x (%16p - %16p) %s",
rel_target, result, reinterpret_cast<void*>(target),
reinterpret_cast<void*>(base), sym_name);
*static_cast<Elf32_Addr*>(rel_target) = result;
}
break;
#elif defined(__i386__)
case R_386_PC32:
count_relocation_if<IsGeneral>(kRelocRelative);
{
const ElfW(Addr) target = sym_addr + get_addend_rel();
const ElfW(Addr) base = reinterpret_cast<ElfW(Addr)>(rel_target);
const ElfW(Addr) result = target - base;
trace_reloc("RELO R_386_PC32 %16p <- 0x%08x (%16p - %16p) %s",
rel_target, result, reinterpret_cast<void*>(target),
reinterpret_cast<void*>(base), sym_name);
*static_cast<ElfW(Addr)*>(rel_target) = result;
}
break;
#endif
default:
DL_ERR("unknown reloc type %d in \"%s\"", r_type, relocator.si->get_realpath());
return false;
}
return true;
}
__attribute__((noinline))
static bool process_relocation_general(Relocator& relocator, const rel_t& reloc) {
return process_relocation_impl<RelocMode::General>(relocator, reloc);
}
template <RelocMode Mode>
__attribute__((always_inline))
static inline bool process_relocation(Relocator& relocator, const rel_t& reloc) {
return Mode == RelocMode::General ?
process_relocation_general(relocator, reloc) :
process_relocation_impl<Mode>(relocator, reloc);
}
template <RelocMode Mode>
__attribute__((noinline))
static bool plain_relocate_impl(Relocator& relocator, rel_t* rels, size_t rel_count) {
for (size_t i = 0; i < rel_count; ++i) {
if (!process_relocation<Mode>(relocator, rels[i])) {
return false;
}
}
return true;
}
template <RelocMode Mode>
__attribute__((noinline))
static bool packed_relocate_impl(Relocator& relocator, sleb128_decoder decoder) {
return for_all_packed_relocs(decoder, [&](const rel_t& reloc) {
return process_relocation<Mode>(relocator, reloc);
});
}
static bool needs_slow_relocate_loop(const Relocator& relocator __unused) {
#if STATS
// TODO: This could become a run-time flag.
return true;
#endif
#if !defined(__LP64__)
if (relocator.si->has_text_relocations) return true;
#endif
if (g_ld_debug_verbosity > LINKER_VERBOSITY_TRACE) {
// If linker TRACE() is enabled, then each relocation is logged.
return true;
}
return false;
}
template <RelocMode OptMode, typename ...Args>
static bool plain_relocate(Relocator& relocator, Args ...args) {
return needs_slow_relocate_loop(relocator) ?
plain_relocate_impl<RelocMode::General>(relocator, args...) :
plain_relocate_impl<OptMode>(relocator, args...);
}
template <RelocMode OptMode, typename ...Args>
static bool packed_relocate(Relocator& relocator, Args ...args) {
return needs_slow_relocate_loop(relocator) ?
packed_relocate_impl<RelocMode::General>(relocator, args...) :
packed_relocate_impl<OptMode>(relocator, args...);
}
bool soinfo::relocate(const SymbolLookupList& lookup_list) {
VersionTracker version_tracker;
if (!version_tracker.init(this)) {
return false;
}
Relocator relocator(version_tracker, lookup_list);
relocator.si = this;
relocator.si_strtab = strtab_;
relocator.si_strtab_size = has_min_version(1) ? strtab_size_ : SIZE_MAX;
relocator.si_symtab = symtab_;
relocator.tlsdesc_args = &tlsdesc_args_;
relocator.tls_tp_base = __libc_shared_globals()->static_tls_layout.offset_thread_pointer();
if (android_relocs_ != nullptr) {
// check signature
if (android_relocs_size_ > 3 &&
android_relocs_[0] == 'A' &&
android_relocs_[1] == 'P' &&
android_relocs_[2] == 'S' &&
android_relocs_[3] == '2') {
DEBUG("[ android relocating %s ]", get_realpath());
const uint8_t* packed_relocs = android_relocs_ + 4;
const size_t packed_relocs_size = android_relocs_size_ - 4;
if (!packed_relocate<RelocMode::Typical>(relocator, sleb128_decoder(packed_relocs, packed_relocs_size))) {
return false;
}
} else {
DL_ERR("bad android relocation header.");
return false;
}
}
if (relr_ != nullptr) {
DEBUG("[ relocating %s relr ]", get_realpath());
if (!relocate_relr()) {
return false;
}
}
#if defined(USE_RELA)
if (rela_ != nullptr) {
DEBUG("[ relocating %s rela ]", get_realpath());
if (!plain_relocate<RelocMode::Typical>(relocator, rela_, rela_count_)) {
return false;
}
}
if (plt_rela_ != nullptr) {
DEBUG("[ relocating %s plt rela ]", get_realpath());
if (!plain_relocate<RelocMode::JumpTable>(relocator, plt_rela_, plt_rela_count_)) {
return false;
}
}
#else
if (rel_ != nullptr) {
DEBUG("[ relocating %s rel ]", get_realpath());
if (!plain_relocate<RelocMode::Typical>(relocator, rel_, rel_count_)) {
return false;
}
}
if (plt_rel_ != nullptr) {
DEBUG("[ relocating %s plt rel ]", get_realpath());
if (!plain_relocate<RelocMode::JumpTable>(relocator, plt_rel_, plt_rel_count_)) {
return false;
}
}
#endif
// Once the tlsdesc_args_ vector's size is finalized, we can write the addresses of its elements
// into the TLSDESC relocations.
#if defined(__aarch64__)
// Bionic currently only implements TLSDESC for arm64.
for (const std::pair<TlsDescriptor*, size_t>& pair : relocator.deferred_tlsdesc_relocs) {
TlsDescriptor* desc = pair.first;
desc->func = tlsdesc_resolver_dynamic;
desc->arg = reinterpret_cast<size_t>(&tlsdesc_args_[pair.second]);
}
#endif
return true;
}