platform_bionic/libc/bionic/pthread.c
Elliott Hughes eb847bc866 Fix x86_64 build, clean up intermediate libraries.
The x86_64 build was failing because clone.S had a call to __thread_entry which
was being added to a different intermediate .a on the way to making libc.so,
and the linker couldn't guarantee statically that such a relocation would be
possible.

  ld: error: out/target/product/generic_x86_64/obj/STATIC_LIBRARIES/libc_common_intermediates/libc_common.a(clone.o): requires dynamic R_X86_64_PC32 reloc against '__thread_entry' which may overflow at runtime; recompile with -fPIC

This patch addresses that by ensuring that the caller and callee end up in the
same intermediate .a. While I'm here, I've tried to clean up some of the mess
that led to this situation too. In particular, this removes libc/private/ from
the default include path (except for the DNS code), and splits out the DNS
code into its own library (since it's a weird special case of upstream NetBSD
code that's diverged so heavily it's unlikely ever to get back in sync).

There's more cleanup of the DNS situation possible, but this is definitely a
step in the right direction, and it's more than enough to get x86_64 building
cleanly.

Change-Id: I00425a7245b7a2573df16cc38798187d0729e7c4
2013-10-09 16:00:17 -07:00

1276 lines
41 KiB
C

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <pthread.h>
#include <errno.h>
#include <limits.h>
#include <sys/atomics.h>
#include <sys/mman.h>
#include <unistd.h>
#include "pthread_internal.h"
#include "private/bionic_atomic_inline.h"
#include "private/bionic_futex.h"
#include "private/bionic_pthread.h"
#include "private/bionic_tls.h"
#include "private/thread_private.h"
extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int status);
extern void _exit_thread(int status);
int __futex_wake_ex(volatile void *ftx, int pshared, int val)
{
return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
}
int __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
{
return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
}
/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
* and thread cancelation
*/
void __pthread_cleanup_push( __pthread_cleanup_t* c,
__pthread_cleanup_func_t routine,
void* arg )
{
pthread_internal_t* thread = __get_thread();
c->__cleanup_routine = routine;
c->__cleanup_arg = arg;
c->__cleanup_prev = thread->cleanup_stack;
thread->cleanup_stack = c;
}
void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
{
pthread_internal_t* thread = __get_thread();
thread->cleanup_stack = c->__cleanup_prev;
if (execute)
c->__cleanup_routine(c->__cleanup_arg);
}
void pthread_exit(void * retval)
{
pthread_internal_t* thread = __get_thread();
void* stack_base = thread->attr.stack_base;
int stack_size = thread->attr.stack_size;
int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
sigset_t mask;
// call the cleanup handlers first
while (thread->cleanup_stack) {
__pthread_cleanup_t* c = thread->cleanup_stack;
thread->cleanup_stack = c->__cleanup_prev;
c->__cleanup_routine(c->__cleanup_arg);
}
// call the TLS destructors, it is important to do that before removing this
// thread from the global list. this will ensure that if someone else deletes
// a TLS key, the corresponding value will be set to NULL in this thread's TLS
// space (see pthread_key_delete)
pthread_key_clean_all();
if (thread->alternate_signal_stack != NULL) {
// Tell the kernel to stop using the alternate signal stack.
stack_t ss;
ss.ss_sp = NULL;
ss.ss_flags = SS_DISABLE;
sigaltstack(&ss, NULL);
// Free it.
munmap(thread->alternate_signal_stack, SIGSTKSZ);
thread->alternate_signal_stack = NULL;
}
// if the thread is detached, destroy the pthread_internal_t
// otherwise, keep it in memory and signal any joiners.
pthread_mutex_lock(&gThreadListLock);
if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
_pthread_internal_remove_locked(thread);
} else {
/* make sure that the thread struct doesn't have stale pointers to a stack that
* will be unmapped after the exit call below.
*/
if (!user_stack) {
thread->attr.stack_base = NULL;
thread->attr.stack_size = 0;
thread->tls = NULL;
}
/* Indicate that the thread has exited for joining threads. */
thread->attr.flags |= PTHREAD_ATTR_FLAG_ZOMBIE;
thread->return_value = retval;
/* Signal the joining thread if present. */
if (thread->attr.flags & PTHREAD_ATTR_FLAG_JOINED) {
pthread_cond_signal(&thread->join_cond);
}
}
pthread_mutex_unlock(&gThreadListLock);
sigfillset(&mask);
sigdelset(&mask, SIGSEGV);
sigprocmask(SIG_SETMASK, &mask, NULL);
if (user_stack) {
// Cleaning up this thread's stack is the creator's responsibility, not ours.
_exit_thread(0);
} else {
// We need to munmap the stack we're running on before calling exit.
// That's not something we can do in C.
_exit_with_stack_teardown(stack_base, stack_size, 0);
}
}
/* a mutex is implemented as a 32-bit integer holding the following fields
*
* bits: name description
* 31-16 tid owner thread's tid (recursive and errorcheck only)
* 15-14 type mutex type
* 13 shared process-shared flag
* 12-2 counter counter of recursive mutexes
* 1-0 state lock state (0, 1 or 2)
*/
/* Convenience macro, creates a mask of 'bits' bits that starts from
* the 'shift'-th least significant bit in a 32-bit word.
*
* Examples: FIELD_MASK(0,4) -> 0xf
* FIELD_MASK(16,9) -> 0x1ff0000
*/
#define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift))
/* This one is used to create a bit pattern from a given field value */
#define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift))
/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
#define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
/* Mutex state:
*
* 0 for unlocked
* 1 for locked, no waiters
* 2 for locked, maybe waiters
*/
#define MUTEX_STATE_SHIFT 0
#define MUTEX_STATE_LEN 2
#define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
#define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
#define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
#define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
#define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
/* return true iff the mutex if locked with no waiters */
#define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
/* return true iff the mutex if locked with maybe waiters */
#define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
#define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
/* Mutex counter:
*
* We need to check for overflow before incrementing, and we also need to
* detect when the counter is 0
*/
#define MUTEX_COUNTER_SHIFT 2
#define MUTEX_COUNTER_LEN 11
#define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
#define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
#define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
/* Used to increment the counter directly after overflow has been checked */
#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
/* Returns true iff the counter is 0 */
#define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
/* Mutex shared bit flag
*
* This flag is set to indicate that the mutex is shared among processes.
* This changes the futex opcode we use for futex wait/wake operations
* (non-shared operations are much faster).
*/
#define MUTEX_SHARED_SHIFT 13
#define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
/* Mutex type:
*
* We support normal, recursive and errorcheck mutexes.
*
* The constants defined here *cannot* be changed because they must match
* the C library ABI which defines the following initialization values in
* <pthread.h>:
*
* __PTHREAD_MUTEX_INIT_VALUE
* __PTHREAD_RECURSIVE_MUTEX_VALUE
* __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
*/
#define MUTEX_TYPE_SHIFT 14
#define MUTEX_TYPE_LEN 2
#define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
#define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
#define MUTEX_TYPE_RECURSIVE 1
#define MUTEX_TYPE_ERRORCHECK 2
#define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
#define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
#define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
#define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
/* Mutex owner field:
*
* This is only used for recursive and errorcheck mutexes. It holds the
* tid of the owning thread. Note that this works because the Linux
* kernel _only_ uses 16-bit values for tids.
*
* More specifically, it will wrap to 10000 when it reaches over 32768 for
* application processes. You can check this by running the following inside
* an adb shell session:
*
OLDPID=$$;
while true; do
NEWPID=$(sh -c 'echo $$')
if [ "$NEWPID" -gt 32768 ]; then
echo "AARGH: new PID $NEWPID is too high!"
exit 1
fi
if [ "$NEWPID" -lt "$OLDPID" ]; then
echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
else
echo -n "$NEWPID!"
fi
OLDPID=$NEWPID
done
* Note that you can run the same example on a desktop Linux system,
* the wrapping will also happen at 32768, but will go back to 300 instead.
*/
#define MUTEX_OWNER_SHIFT 16
#define MUTEX_OWNER_LEN 16
#define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
#define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
/* Convenience macros.
*
* These are used to form or modify the bit pattern of a given mutex value
*/
/* a mutex attribute holds the following fields
*
* bits: name description
* 0-3 type type of mutex
* 4 shared process-shared flag
*/
#define MUTEXATTR_TYPE_MASK 0x000f
#define MUTEXATTR_SHARED_MASK 0x0010
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
if (attr) {
*attr = PTHREAD_MUTEX_DEFAULT;
return 0;
} else {
return EINVAL;
}
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (attr) {
*attr = -1;
return 0;
} else {
return EINVAL;
}
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
{
if (attr) {
int atype = (*attr & MUTEXATTR_TYPE_MASK);
if (atype >= PTHREAD_MUTEX_NORMAL &&
atype <= PTHREAD_MUTEX_ERRORCHECK) {
*type = atype;
return 0;
}
}
return EINVAL;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (attr && type >= PTHREAD_MUTEX_NORMAL &&
type <= PTHREAD_MUTEX_ERRORCHECK ) {
*attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
return 0;
}
return EINVAL;
}
/* process-shared mutexes are not supported at the moment */
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
{
if (!attr)
return EINVAL;
switch (pshared) {
case PTHREAD_PROCESS_PRIVATE:
*attr &= ~MUTEXATTR_SHARED_MASK;
return 0;
case PTHREAD_PROCESS_SHARED:
/* our current implementation of pthread actually supports shared
* mutexes but won't cleanup if a process dies with the mutex held.
* Nevertheless, it's better than nothing. Shared mutexes are used
* by surfaceflinger and audioflinger.
*/
*attr |= MUTEXATTR_SHARED_MASK;
return 0;
}
return EINVAL;
}
int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
{
if (!attr || !pshared)
return EINVAL;
*pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
: PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)
{
int value = 0;
if (mutex == NULL)
return EINVAL;
if (__predict_true(attr == NULL)) {
mutex->value = MUTEX_TYPE_BITS_NORMAL;
return 0;
}
if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
value |= MUTEX_SHARED_MASK;
switch (*attr & MUTEXATTR_TYPE_MASK) {
case PTHREAD_MUTEX_NORMAL:
value |= MUTEX_TYPE_BITS_NORMAL;
break;
case PTHREAD_MUTEX_RECURSIVE:
value |= MUTEX_TYPE_BITS_RECURSIVE;
break;
case PTHREAD_MUTEX_ERRORCHECK:
value |= MUTEX_TYPE_BITS_ERRORCHECK;
break;
default:
return EINVAL;
}
mutex->value = value;
return 0;
}
/*
* Lock a non-recursive mutex.
*
* As noted above, there are three states:
* 0 (unlocked, no contention)
* 1 (locked, no contention)
* 2 (locked, contention)
*
* Non-recursive mutexes don't use the thread-id or counter fields, and the
* "type" value is zero, so the only bits that will be set are the ones in
* the lock state field.
*/
static __inline__ void
_normal_lock(pthread_mutex_t* mutex, int shared)
{
/* convenience shortcuts */
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
/*
* The common case is an unlocked mutex, so we begin by trying to
* change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
* __bionic_cmpxchg() returns 0 if it made the swap successfully.
* If the result is nonzero, this lock is already held by another thread.
*/
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
/*
* We want to go to sleep until the mutex is available, which
* requires promoting it to state 2 (CONTENDED). We need to
* swap in the new state value and then wait until somebody wakes us up.
*
* __bionic_swap() returns the previous value. We swap 2 in and
* see if we got zero back; if so, we have acquired the lock. If
* not, another thread still holds the lock and we wait again.
*
* The second argument to the __futex_wait() call is compared
* against the current value. If it doesn't match, __futex_wait()
* returns immediately (otherwise, it sleeps for a time specified
* by the third argument; 0 means sleep forever). This ensures
* that the mutex is in state 2 when we go to sleep on it, which
* guarantees a wake-up call.
*/
while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
__futex_wait_ex(&mutex->value, shared, locked_contended, 0);
}
ANDROID_MEMBAR_FULL();
}
/*
* Release a non-recursive mutex. The caller is responsible for determining
* that we are in fact the owner of this lock.
*/
static __inline__ void
_normal_unlock(pthread_mutex_t* mutex, int shared)
{
ANDROID_MEMBAR_FULL();
/*
* The mutex state will be 1 or (rarely) 2. We use an atomic decrement
* to release the lock. __bionic_atomic_dec() returns the previous value;
* if it wasn't 1 we have to do some additional work.
*/
if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
/*
* Start by releasing the lock. The decrement changed it from
* "contended lock" to "uncontended lock", which means we still
* hold it, and anybody who tries to sneak in will push it back
* to state 2.
*
* Once we set it to zero the lock is up for grabs. We follow
* this with a __futex_wake() to ensure that one of the waiting
* threads has a chance to grab it.
*
* This doesn't cause a race with the swap/wait pair in
* _normal_lock(), because the __futex_wait() call there will
* return immediately if the mutex value isn't 2.
*/
mutex->value = shared;
/*
* Wake up one waiting thread. We don't know which thread will be
* woken or when it'll start executing -- futexes make no guarantees
* here. There may not even be a thread waiting.
*
* The newly-woken thread will replace the 0 we just set above
* with 2, which means that when it eventually releases the mutex
* it will also call FUTEX_WAKE. This results in one extra wake
* call whenever a lock is contended, but lets us avoid forgetting
* anyone without requiring us to track the number of sleepers.
*
* It's possible for another thread to sneak in and grab the lock
* between the zero assignment above and the wake call below. If
* the new thread is "slow" and holds the lock for a while, we'll
* wake up a sleeper, which will swap in a 2 and then go back to
* sleep since the lock is still held. If the new thread is "fast",
* running to completion before we call wake, the thread we
* eventually wake will find an unlocked mutex and will execute.
* Either way we have correct behavior and nobody is orphaned on
* the wait queue.
*/
__futex_wake_ex(&mutex->value, shared, 1);
}
}
/* This common inlined function is used to increment the counter of an
* errorcheck or recursive mutex.
*
* For errorcheck mutexes, it will return EDEADLK
* If the counter overflows, it will return EAGAIN
* Otherwise, it atomically increments the counter and returns 0
* after providing an acquire barrier.
*
* mtype is the current mutex type
* mvalue is the current mutex value (already loaded)
* mutex pointers to the mutex.
*/
static __inline__ __attribute__((always_inline)) int
_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
{
if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
/* trying to re-lock a mutex we already acquired */
return EDEADLK;
}
/* Detect recursive lock overflow and return EAGAIN.
* This is safe because only the owner thread can modify the
* counter bits in the mutex value.
*/
if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
return EAGAIN;
}
/* We own the mutex, but other threads are able to change
* the lower bits (e.g. promoting it to "contended"), so we
* need to use an atomic cmpxchg loop to update the counter.
*/
for (;;) {
/* increment counter, overflow was already checked */
int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
/* mutex is still locked, not need for a memory barrier */
return 0;
}
/* the value was changed, this happens when another thread changes
* the lower state bits from 1 to 2 to indicate contention. This
* cannot change the counter, so simply reload and try again.
*/
mvalue = mutex->value;
}
}
__LIBC_HIDDEN__
int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
{
int mvalue, mtype, tid, shared;
if (__predict_false(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle normal case first */
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
_normal_lock(mutex, shared);
return 0;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->tid;
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
return _recursive_increment(mutex, mvalue, mtype);
/* Add in shared state to avoid extra 'or' operations below */
mtype |= shared;
/* First, if the mutex is unlocked, try to quickly acquire it.
* In the optimistic case where this works, set the state to 1 to
* indicate locked with no contention */
if (mvalue == mtype) {
int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
/* argh, the value changed, reload before entering the loop */
mvalue = mutex->value;
}
for (;;) {
int newval;
/* if the mutex is unlocked, its value should be 'mtype' and
* we try to acquire it by setting its owner and state atomically.
* NOTE: We put the state to 2 since we _know_ there is contention
* when we are in this loop. This ensures all waiters will be
* unlocked.
*/
if (mvalue == mtype) {
newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
/* TODO: Change this to __bionic_cmpxchg_acquire when we
* implement it to get rid of the explicit memory
* barrier below.
*/
if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
mvalue = mutex->value;
continue;
}
ANDROID_MEMBAR_FULL();
return 0;
}
/* the mutex is already locked by another thread, if its state is 1
* we will change it to 2 to indicate contention. */
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
mvalue = mutex->value;
continue;
}
mvalue = newval;
}
/* wait until the mutex is unlocked */
__futex_wait_ex(&mutex->value, shared, mvalue, NULL);
mvalue = mutex->value;
}
/* NOTREACHED */
}
int pthread_mutex_lock(pthread_mutex_t *mutex)
{
int err = pthread_mutex_lock_impl(mutex);
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
if (!err) {
pthread_debug_mutex_lock_check(mutex);
}
}
#endif
return err;
}
__LIBC_HIDDEN__
int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
{
int mvalue, mtype, tid, shared;
if (__predict_false(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle common case first */
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
_normal_unlock(mutex, shared);
return 0;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->tid;
if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
return EPERM;
/* If the counter is > 0, we can simply decrement it atomically.
* Since other threads can mutate the lower state bits (and only the
* lower state bits), use a cmpxchg to do it.
*/
if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
for (;;) {
int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
/* success: we still own the mutex, so no memory barrier */
return 0;
}
/* the value changed, so reload and loop */
mvalue = mutex->value;
}
}
/* the counter is 0, so we're going to unlock the mutex by resetting
* its value to 'unlocked'. We need to perform a swap in order
* to read the current state, which will be 2 if there are waiters
* to awake.
*
* TODO: Change this to __bionic_swap_release when we implement it
* to get rid of the explicit memory barrier below.
*/
ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */
mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
/* Wake one waiting thread, if any */
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
__futex_wake_ex(&mutex->value, shared, 1);
}
return 0;
}
int pthread_mutex_unlock(pthread_mutex_t *mutex)
{
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
pthread_debug_mutex_unlock_check(mutex);
}
#endif
return pthread_mutex_unlock_impl(mutex);
}
__LIBC_HIDDEN__
int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
{
int mvalue, mtype, tid, shared;
if (__predict_false(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle common case first */
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
{
if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
&mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
return EBUSY;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->tid;
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
return _recursive_increment(mutex, mvalue, mtype);
/* Same as pthread_mutex_lock, except that we don't want to wait, and
* the only operation that can succeed is a single cmpxchg to acquire the
* lock if it is released / not owned by anyone. No need for a complex loop.
*/
mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
ANDROID_MEMBAR_FULL();
return 0;
}
return EBUSY;
}
int pthread_mutex_trylock(pthread_mutex_t *mutex)
{
int err = pthread_mutex_trylock_impl(mutex);
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
if (!err) {
pthread_debug_mutex_lock_check(mutex);
}
}
#endif
return err;
}
/* initialize 'ts' with the difference between 'abstime' and the current time
* according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
*/
static int
__timespec_to_absolute(struct timespec* ts, const struct timespec* abstime, clockid_t clock)
{
clock_gettime(clock, ts);
ts->tv_sec = abstime->tv_sec - ts->tv_sec;
ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
if (ts->tv_nsec < 0) {
ts->tv_sec--;
ts->tv_nsec += 1000000000;
}
if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
return -1;
return 0;
}
/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
* milliseconds.
*/
static void
__timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_t clock)
{
clock_gettime(clock, abstime);
abstime->tv_sec += msecs/1000;
abstime->tv_nsec += (msecs%1000)*1000000;
if (abstime->tv_nsec >= 1000000000) {
abstime->tv_sec++;
abstime->tv_nsec -= 1000000000;
}
}
__LIBC_HIDDEN__
int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
{
clockid_t clock = CLOCK_MONOTONIC;
struct timespec abstime;
struct timespec ts;
int mvalue, mtype, tid, shared;
/* compute absolute expiration time */
__timespec_to_relative_msec(&abstime, msecs, clock);
if (__predict_false(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle common case first */
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
{
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
/* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
/* loop while needed */
while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;
__futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
}
ANDROID_MEMBAR_FULL();
return 0;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->tid;
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
return _recursive_increment(mutex, mvalue, mtype);
/* the following implements the same loop than pthread_mutex_lock_impl
* but adds checks to ensure that the operation never exceeds the
* absolute expiration time.
*/
mtype |= shared;
/* first try a quick lock */
if (mvalue == mtype) {
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
ANDROID_MEMBAR_FULL();
return 0;
}
mvalue = mutex->value;
}
for (;;) {
struct timespec ts;
/* if the value is 'unlocked', try to acquire it directly */
/* NOTE: put state to 2 since we know there is contention */
if (mvalue == mtype) /* unlocked */ {
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
/* the value changed before we could lock it. We need to check
* the time to avoid livelocks, reload the value, then loop again. */
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;
mvalue = mutex->value;
continue;
}
/* The value is locked. If 'uncontended', try to switch its state
* to 'contented' to ensure we get woken up later. */
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
/* this failed because the value changed, reload it */
mvalue = mutex->value;
} else {
/* this succeeded, update mvalue */
mvalue = newval;
}
}
/* check time and update 'ts' */
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;
/* Only wait to be woken up if the state is '2', otherwise we'll
* simply loop right now. This can happen when the second cmpxchg
* in our loop failed because the mutex was unlocked by another
* thread.
*/
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
return EBUSY;
}
mvalue = mutex->value;
}
}
/* NOTREACHED */
}
int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
{
int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
if (!err) {
pthread_debug_mutex_lock_check(mutex);
}
}
#endif
return err;
}
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
int ret;
/* use trylock to ensure that the mutex value is
* valid and is not already locked. */
ret = pthread_mutex_trylock_impl(mutex);
if (ret != 0)
return ret;
mutex->value = 0xdead10cc;
return 0;
}
int pthread_condattr_init(pthread_condattr_t *attr)
{
if (attr == NULL)
return EINVAL;
*attr = PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
{
if (attr == NULL || pshared == NULL)
return EINVAL;
*pshared = *attr;
return 0;
}
int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
{
if (attr == NULL)
return EINVAL;
if (pshared != PTHREAD_PROCESS_SHARED &&
pshared != PTHREAD_PROCESS_PRIVATE)
return EINVAL;
*attr = pshared;
return 0;
}
int pthread_condattr_destroy(pthread_condattr_t *attr)
{
if (attr == NULL)
return EINVAL;
*attr = 0xdeada11d;
return 0;
}
/* We use one bit in condition variable values as the 'shared' flag
* The rest is a counter.
*/
#define COND_SHARED_MASK 0x0001
#define COND_COUNTER_INCREMENT 0x0002
#define COND_COUNTER_MASK (~COND_SHARED_MASK)
#define COND_IS_SHARED(c) (((c)->value & COND_SHARED_MASK) != 0)
/* XXX *technically* there is a race condition that could allow
* XXX a signal to be missed. If thread A is preempted in _wait()
* XXX after unlocking the mutex and before waiting, and if other
* XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
* XXX before thread A is scheduled again and calls futex_wait(),
* XXX then the signal will be lost.
*/
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)
{
if (cond == NULL)
return EINVAL;
cond->value = 0;
if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
cond->value |= COND_SHARED_MASK;
return 0;
}
int pthread_cond_destroy(pthread_cond_t *cond)
{
if (cond == NULL)
return EINVAL;
cond->value = 0xdeadc04d;
return 0;
}
/* This function is used by pthread_cond_broadcast and
* pthread_cond_signal to atomically decrement the counter
* then wake-up 'counter' threads.
*/
static int
__pthread_cond_pulse(pthread_cond_t *cond, int counter)
{
long flags;
if (__predict_false(cond == NULL))
return EINVAL;
flags = (cond->value & ~COND_COUNTER_MASK);
for (;;) {
long oldval = cond->value;
long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
| flags;
if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
break;
}
/*
* Ensure that all memory accesses previously made by this thread are
* visible to the woken thread(s). On the other side, the "wait"
* code will issue any necessary barriers when locking the mutex.
*
* This may not strictly be necessary -- if the caller follows
* recommended practice and holds the mutex before signaling the cond
* var, the mutex ops will provide correct semantics. If they don't
* hold the mutex, they're subject to race conditions anyway.
*/
ANDROID_MEMBAR_FULL();
__futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
return 0;
}
int pthread_cond_broadcast(pthread_cond_t *cond)
{
return __pthread_cond_pulse(cond, INT_MAX);
}
int pthread_cond_signal(pthread_cond_t *cond)
{
return __pthread_cond_pulse(cond, 1);
}
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
return pthread_cond_timedwait(cond, mutex, NULL);
}
int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *reltime)
{
int status;
int oldvalue = cond->value;
pthread_mutex_unlock(mutex);
status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
pthread_mutex_lock(mutex);
if (status == (-ETIMEDOUT)) return ETIMEDOUT;
return 0;
}
int __pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime,
clockid_t clock)
{
struct timespec ts;
struct timespec * tsp;
if (abstime != NULL) {
if (__timespec_to_absolute(&ts, abstime, clock) < 0)
return ETIMEDOUT;
tsp = &ts;
} else {
tsp = NULL;
}
return __pthread_cond_timedwait_relative(cond, mutex, tsp);
}
int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime)
{
return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
}
/* this one exists only for backward binary compatibility */
int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime)
{
return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
}
int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime)
{
return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
}
int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *reltime)
{
return __pthread_cond_timedwait_relative(cond, mutex, reltime);
}
int pthread_cond_timeout_np(pthread_cond_t *cond,
pthread_mutex_t * mutex,
unsigned msecs)
{
struct timespec ts;
ts.tv_sec = msecs / 1000;
ts.tv_nsec = (msecs % 1000) * 1000000;
return __pthread_cond_timedwait_relative(cond, mutex, &ts);
}
/* NOTE: this implementation doesn't support a init function that throws a C++ exception
* or calls fork()
*/
int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
{
volatile pthread_once_t* ocptr = once_control;
/* PTHREAD_ONCE_INIT is 0, we use the following bit flags
*
* bit 0 set -> initialization is under way
* bit 1 set -> initialization is complete
*/
#define ONCE_INITIALIZING (1 << 0)
#define ONCE_COMPLETED (1 << 1)
/* First check if the once is already initialized. This will be the common
* case and we want to make this as fast as possible. Note that this still
* requires a load_acquire operation here to ensure that all the
* stores performed by the initialization function are observable on
* this CPU after we exit.
*/
if (__predict_true((*ocptr & ONCE_COMPLETED) != 0)) {
ANDROID_MEMBAR_FULL();
return 0;
}
for (;;) {
/* Try to atomically set the INITIALIZING flag.
* This requires a cmpxchg loop, and we may need
* to exit prematurely if we detect that
* COMPLETED is now set.
*/
int32_t oldval, newval;
do {
oldval = *ocptr;
if ((oldval & ONCE_COMPLETED) != 0)
break;
newval = oldval | ONCE_INITIALIZING;
} while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
if ((oldval & ONCE_COMPLETED) != 0) {
/* We detected that COMPLETED was set while in our loop */
ANDROID_MEMBAR_FULL();
return 0;
}
if ((oldval & ONCE_INITIALIZING) == 0) {
/* We got there first, we can jump out of the loop to
* handle the initialization */
break;
}
/* Another thread is running the initialization and hasn't completed
* yet, so wait for it, then try again. */
__futex_wait_ex(ocptr, 0, oldval, NULL);
}
/* call the initialization function. */
(*init_routine)();
/* Do a store_release indicating that initialization is complete */
ANDROID_MEMBAR_FULL();
*ocptr = ONCE_COMPLETED;
/* Wake up any waiters, if any */
__futex_wake_ex(ocptr, 0, INT_MAX);
return 0;
}
pid_t __pthread_gettid(pthread_t thid) {
pthread_internal_t* thread = (pthread_internal_t*) thid;
return thread->tid;
}
int __pthread_settid(pthread_t thid, pid_t tid) {
if (thid == 0) {
return EINVAL;
}
pthread_internal_t* thread = (pthread_internal_t*) thid;
thread->tid = tid;
return 0;
}