2950f13eef
I was intending to change our behavior to match POSIX, but reality convinced me otherwise. Also add missing argument names to the header file on the assumption they'll be shown in Studio one day. Bug: http://b/26203902 Test: ran tests Change-Id: I2aaea48a88d408a32925033fc8f17448fb63252e
303 lines
8.1 KiB
C++
303 lines
8.1 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <errno.h>
|
|
#include <sched.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
|
|
static int child_fn(void* i_ptr) {
|
|
*reinterpret_cast<int*>(i_ptr) = 42;
|
|
return 123;
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
TEST(sched, clone) {
|
|
void* child_stack[1024];
|
|
|
|
int i = 0;
|
|
pid_t tid = clone(child_fn, &child_stack[1024], CLONE_VM, &i);
|
|
|
|
int status;
|
|
ASSERT_EQ(tid, TEMP_FAILURE_RETRY(waitpid(tid, &status, __WCLONE)));
|
|
|
|
ASSERT_EQ(42, i);
|
|
|
|
ASSERT_TRUE(WIFEXITED(status));
|
|
ASSERT_EQ(123, WEXITSTATUS(status));
|
|
}
|
|
#else
|
|
// For glibc, any call to clone with CLONE_VM set will cause later pthread
|
|
// calls in the same process to misbehave.
|
|
// See https://sourceware.org/bugzilla/show_bug.cgi?id=10311 for more details.
|
|
TEST(sched, clone) {
|
|
// In order to enumerate all possible tests for CTS, create an empty test.
|
|
GTEST_LOG_(INFO) << "This test does nothing.\n";
|
|
}
|
|
#endif
|
|
|
|
TEST(sched, clone_errno) {
|
|
// Check that our hand-written clone assembler sets errno correctly on failure.
|
|
uintptr_t fake_child_stack[16];
|
|
errno = 0;
|
|
// If CLONE_THREAD is set, CLONE_SIGHAND must be set too.
|
|
ASSERT_EQ(-1, clone(child_fn, &fake_child_stack[16], CLONE_THREAD, NULL));
|
|
ASSERT_EQ(EINVAL, errno);
|
|
}
|
|
|
|
TEST(sched, clone_null_child_stack) {
|
|
int i = 0;
|
|
errno = 0;
|
|
ASSERT_EQ(-1, clone(child_fn, nullptr, CLONE_VM, &i));
|
|
ASSERT_EQ(EINVAL, errno);
|
|
}
|
|
|
|
TEST(sched, cpu_set) {
|
|
cpu_set_t set;
|
|
|
|
CPU_ZERO(&set);
|
|
CPU_SET(0, &set);
|
|
CPU_SET(17, &set);
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
ASSERT_EQ(i == 0 || i == 17, CPU_ISSET(i, &set));
|
|
}
|
|
|
|
// We should fail silently if we try to set/test outside the range.
|
|
CPU_SET(CPU_SETSIZE, &set);
|
|
ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set));
|
|
}
|
|
|
|
TEST(sched, cpu_count) {
|
|
cpu_set_t set;
|
|
|
|
CPU_ZERO(&set);
|
|
ASSERT_EQ(0, CPU_COUNT(&set));
|
|
CPU_SET(2, &set);
|
|
CPU_SET(10, &set);
|
|
ASSERT_EQ(2, CPU_COUNT(&set));
|
|
CPU_CLR(10, &set);
|
|
ASSERT_EQ(1, CPU_COUNT(&set));
|
|
}
|
|
|
|
TEST(sched, cpu_zero) {
|
|
cpu_set_t set;
|
|
|
|
CPU_ZERO(&set);
|
|
ASSERT_EQ(0, CPU_COUNT(&set));
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
ASSERT_FALSE(CPU_ISSET(i, &set));
|
|
}
|
|
}
|
|
|
|
TEST(sched, cpu_clr) {
|
|
cpu_set_t set;
|
|
|
|
CPU_ZERO(&set);
|
|
CPU_SET(0, &set);
|
|
CPU_SET(1, &set);
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set));
|
|
}
|
|
CPU_CLR(1, &set);
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
ASSERT_EQ(i == 0, CPU_ISSET(i, &set));
|
|
}
|
|
|
|
// We should fail silently if we try to clear/test outside the range.
|
|
CPU_CLR(CPU_SETSIZE, &set);
|
|
ASSERT_FALSE(CPU_ISSET(CPU_SETSIZE, &set));
|
|
}
|
|
|
|
TEST(sched, cpu_equal) {
|
|
cpu_set_t set1;
|
|
cpu_set_t set2;
|
|
|
|
CPU_ZERO(&set1);
|
|
CPU_ZERO(&set2);
|
|
CPU_SET(1, &set1);
|
|
ASSERT_FALSE(CPU_EQUAL(&set1, &set2));
|
|
CPU_SET(1, &set2);
|
|
ASSERT_TRUE(CPU_EQUAL(&set1, &set2));
|
|
}
|
|
|
|
TEST(sched, cpu_op) {
|
|
cpu_set_t set1;
|
|
cpu_set_t set2;
|
|
cpu_set_t set3;
|
|
|
|
CPU_ZERO(&set1);
|
|
CPU_ZERO(&set2);
|
|
CPU_ZERO(&set3);
|
|
CPU_SET(0, &set1);
|
|
CPU_SET(0, &set2);
|
|
CPU_SET(1, &set2);
|
|
|
|
CPU_AND(&set3, &set1, &set2);
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
ASSERT_EQ(i == 0, CPU_ISSET(i, &set3));
|
|
}
|
|
|
|
CPU_XOR(&set3, &set1, &set2);
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
ASSERT_EQ(i == 1, CPU_ISSET(i, &set3));
|
|
}
|
|
|
|
CPU_OR(&set3, &set1, &set2);
|
|
for (int i = 0; i < CPU_SETSIZE; i++) {
|
|
ASSERT_EQ(i == 0 || i == 1, CPU_ISSET(i, &set3));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(sched, cpu_alloc_small) {
|
|
cpu_set_t* set = CPU_ALLOC(17);
|
|
size_t size = CPU_ALLOC_SIZE(17);
|
|
|
|
CPU_ZERO_S(size, set);
|
|
ASSERT_EQ(0, CPU_COUNT_S(size, set));
|
|
CPU_SET_S(16, size, set);
|
|
ASSERT_TRUE(CPU_ISSET_S(16, size, set));
|
|
|
|
CPU_FREE(set);
|
|
}
|
|
|
|
TEST(sched, cpu_alloc_big) {
|
|
cpu_set_t* set = CPU_ALLOC(10 * CPU_SETSIZE);
|
|
size_t size = CPU_ALLOC_SIZE(10 * CPU_SETSIZE);
|
|
|
|
CPU_ZERO_S(size, set);
|
|
ASSERT_EQ(0, CPU_COUNT_S(size, set));
|
|
CPU_SET_S(CPU_SETSIZE, size, set);
|
|
ASSERT_TRUE(CPU_ISSET_S(CPU_SETSIZE, size, set));
|
|
|
|
CPU_FREE(set);
|
|
}
|
|
|
|
TEST(sched, cpu_s_macros) {
|
|
int set_size = 64;
|
|
size_t size = CPU_ALLOC_SIZE(set_size);
|
|
cpu_set_t* set = CPU_ALLOC(set_size);
|
|
|
|
CPU_ZERO_S(size, set);
|
|
for (int i = 0; i < set_size; i++) {
|
|
ASSERT_FALSE(CPU_ISSET_S(i, size, set));
|
|
CPU_SET_S(i, size, set);
|
|
ASSERT_TRUE(CPU_ISSET_S(i, size, set));
|
|
ASSERT_EQ(i + 1, CPU_COUNT_S(size, set));
|
|
}
|
|
|
|
for (int i = 0; i < set_size; i++) {
|
|
CPU_CLR_S(i, size, set);
|
|
ASSERT_FALSE(CPU_ISSET_S(i, size, set));
|
|
ASSERT_EQ(set_size - i - 1, CPU_COUNT_S(size, set));
|
|
}
|
|
|
|
CPU_FREE(set);
|
|
}
|
|
|
|
TEST(sched, cpu_op_s_macros) {
|
|
int set_size1 = 64;
|
|
int set_size2 = set_size1 * 2;
|
|
int set_size3 = set_size1 * 3;
|
|
size_t size1 = CPU_ALLOC_SIZE(set_size1);
|
|
size_t size2 = CPU_ALLOC_SIZE(set_size2);
|
|
size_t size3 = CPU_ALLOC_SIZE(set_size3);
|
|
|
|
cpu_set_t* set1 = CPU_ALLOC(set_size1);
|
|
cpu_set_t* set2 = CPU_ALLOC(set_size2);
|
|
cpu_set_t* set3 = CPU_ALLOC(set_size3);
|
|
CPU_ZERO_S(size1, set1);
|
|
CPU_ZERO_S(size2, set2);
|
|
CPU_ZERO_S(size3, set3);
|
|
|
|
CPU_SET_S(0, size1, set1);
|
|
CPU_SET_S(0, size2, set2);
|
|
CPU_SET_S(1, size3, set2);
|
|
|
|
CPU_AND_S(size1, set3, set1, set2);
|
|
for (int i = 0; i < set_size3; i++) {
|
|
ASSERT_EQ(i == 0, CPU_ISSET_S(i, size3, set3));
|
|
}
|
|
|
|
CPU_OR_S(size1, set3, set1, set2);
|
|
for (int i = 0; i < set_size3; i++) {
|
|
ASSERT_EQ(i == 0 || i == 1, CPU_ISSET_S(i, size3, set3));
|
|
}
|
|
|
|
CPU_XOR_S(size1, set3, set1, set2);
|
|
for (int i = 0; i < set_size3; i++) {
|
|
ASSERT_EQ(i == 1, CPU_ISSET_S(i, size3, set3));
|
|
}
|
|
|
|
CPU_FREE(set1);
|
|
CPU_FREE(set2);
|
|
CPU_FREE(set3);
|
|
}
|
|
|
|
TEST(sched, cpu_equal_s) {
|
|
int set_size1 = 64;
|
|
int set_size2 = set_size1 * 2;
|
|
size_t size1 = CPU_ALLOC_SIZE(set_size1);
|
|
size_t size2 = CPU_ALLOC_SIZE(set_size2);
|
|
|
|
cpu_set_t* set1 = CPU_ALLOC(set_size1);
|
|
cpu_set_t* set2 = CPU_ALLOC(set_size2);
|
|
|
|
CPU_ZERO_S(size1, set1);
|
|
CPU_ZERO_S(size2, set2);
|
|
|
|
CPU_SET_S(0, size1, set1);
|
|
ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set1));
|
|
ASSERT_FALSE(CPU_EQUAL_S(size1, set1, set2));
|
|
CPU_SET_S(0, size2, set2);
|
|
ASSERT_TRUE(CPU_EQUAL_S(size1, set1, set2));
|
|
|
|
CPU_FREE(set1);
|
|
CPU_FREE(set2);
|
|
}
|
|
|
|
TEST(sched, sched_get_priority_min_sched_get_priority_max) {
|
|
EXPECT_LE(sched_get_priority_min(SCHED_BATCH), sched_get_priority_max(SCHED_BATCH));
|
|
EXPECT_LE(sched_get_priority_min(SCHED_FIFO), sched_get_priority_max(SCHED_FIFO));
|
|
EXPECT_LE(sched_get_priority_min(SCHED_IDLE), sched_get_priority_max(SCHED_IDLE));
|
|
EXPECT_LE(sched_get_priority_min(SCHED_OTHER), sched_get_priority_max(SCHED_OTHER));
|
|
EXPECT_LE(sched_get_priority_min(SCHED_RR), sched_get_priority_max(SCHED_RR));
|
|
}
|
|
|
|
TEST(sched, sched_getscheduler_sched_setscheduler) {
|
|
// POSIX: "If pid is zero, the scheduling policy shall be returned for the
|
|
// calling process".
|
|
ASSERT_EQ(sched_getscheduler(getpid()), sched_getscheduler(0));
|
|
|
|
const int original_policy = sched_getscheduler(getpid());
|
|
sched_param p = {};
|
|
p.sched_priority = sched_get_priority_min(original_policy);
|
|
errno = 0;
|
|
ASSERT_EQ(-1, sched_setscheduler(getpid(), INT_MAX, &p));
|
|
ASSERT_EQ(EINVAL, errno);
|
|
|
|
ASSERT_EQ(0, sched_getparam(getpid(), &p));
|
|
ASSERT_EQ(original_policy, sched_setscheduler(getpid(), SCHED_BATCH, &p));
|
|
// POSIX says this should return the previous policy (here SCHED_BATCH),
|
|
// but the Linux system call doesn't, and the glibc wrapper doesn't correct
|
|
// this (the "returns 0" behavior is even documented on the man page in
|
|
// the BUGS section). This was our historical behavior too, so in the
|
|
// absence of reasons to break compatibility with ourselves and glibc, we
|
|
// don't behave as POSIX specifies. http://b/26203902.
|
|
ASSERT_EQ(0, sched_setscheduler(getpid(), original_policy, &p));
|
|
}
|