platform_bionic/tests/signal_test.cpp
Yabin Cui 634816055f support _POSIX_REALTIME_SIGNALS
Bug: 18489947
Change-Id: I2e834d68bc10ca5fc7ebde047b517a3074179475
2014-12-08 21:52:43 -08:00

377 lines
10 KiB
C++

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <signal.h>
#include <gtest/gtest.h>
#include <errno.h>
#include "ScopedSignalHandler.h"
static size_t SIGNAL_MIN() {
return 1; // Signals start at 1 (SIGHUP), not 0.
}
static size_t SIGNAL_MAX() {
size_t result = SIGRTMAX;
#if defined(__BIONIC__) && !defined(__mips__) && !defined(__LP64__)
// 32-bit bionic's sigset_t is too small for ARM and x86: 32 bits instead of 64.
// This means you can't refer to any of the real-time signals.
// See http://b/3038348 and http://b/5828899.
result = 32;
#else
// Otherwise, C libraries should be perfectly capable of using their largest signal.
if (sizeof(sigset_t) * 8 < static_cast<size_t>(SIGRTMAX)) {
abort();
}
#endif
return result;
}
template <typename Fn>
static void TestSigSet1(Fn fn) {
// NULL sigset_t*.
sigset_t* set_ptr = NULL;
errno = 0;
ASSERT_EQ(-1, fn(set_ptr));
ASSERT_EQ(EINVAL, errno);
// Non-NULL.
sigset_t set;
errno = 0;
ASSERT_EQ(0, fn(&set));
ASSERT_EQ(0, errno);
}
template <typename Fn>
static void TestSigSet2(Fn fn) {
// NULL sigset_t*.
sigset_t* set_ptr = NULL;
errno = 0;
ASSERT_EQ(-1, fn(set_ptr, SIGSEGV));
ASSERT_EQ(EINVAL, errno);
sigset_t set;
sigemptyset(&set);
// Bad signal number: too small.
errno = 0;
ASSERT_EQ(-1, fn(&set, 0));
ASSERT_EQ(EINVAL, errno);
// Bad signal number: too high.
errno = 0;
ASSERT_EQ(-1, fn(&set, SIGNAL_MAX() + 1));
ASSERT_EQ(EINVAL, errno);
// Good signal numbers, low and high ends of range.
errno = 0;
ASSERT_EQ(0, fn(&set, SIGNAL_MIN()));
ASSERT_EQ(0, errno);
ASSERT_EQ(0, fn(&set, SIGNAL_MAX()));
ASSERT_EQ(0, errno);
}
TEST(signal, sigismember_invalid) {
TestSigSet2(sigismember);
}
TEST(signal, sigaddset_invalid) {
TestSigSet2(sigaddset);
}
TEST(signal, sigdelset_invalid) {
TestSigSet2(sigdelset);
}
TEST(signal, sigemptyset_invalid) {
TestSigSet1(sigemptyset);
}
TEST(signal, sigfillset_invalid) {
TestSigSet1(sigfillset);
}
TEST(signal, raise_invalid) {
errno = 0;
ASSERT_EQ(-1, raise(-1));
ASSERT_EQ(EINVAL, errno);
}
static void raise_in_signal_handler_helper(int signal_number) {
ASSERT_EQ(SIGALRM, signal_number);
static int count = 0;
if (++count == 1) {
raise(SIGALRM);
}
}
TEST(signal, raise_in_signal_handler) {
ScopedSignalHandler ssh(SIGALRM, raise_in_signal_handler_helper);
raise(SIGALRM);
}
static void HandleSIGALRM(int signal_number) {
ASSERT_EQ(SIGALRM, signal_number);
}
TEST(signal, sigwait) {
ScopedSignalHandler ssh(SIGALRM, HandleSIGALRM);
sigset_t wait_set;
sigemptyset(&wait_set);
sigaddset(&wait_set, SIGALRM);
alarm(1);
int received_signal;
errno = 0;
ASSERT_EQ(0, sigwait(&wait_set, &received_signal));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGALRM, received_signal);
}
static int g_sigsuspend_test_helper_call_count = 0;
static void SigSuspendTestHelper(int) {
++g_sigsuspend_test_helper_call_count;
}
TEST(signal, sigsuspend_sigpending) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
ScopedSignalHandler ssh(SIGALRM, SigSuspendTestHelper);
// There should be no pending signals.
sigset_t pending;
sigemptyset(&pending);
ASSERT_EQ(0, sigpending(&pending));
for (size_t i = SIGNAL_MIN(); i <= SIGNAL_MAX(); ++i) {
EXPECT_FALSE(sigismember(&pending, i)) << i;
}
// Raise SIGALRM and check our signal handler wasn't called.
raise(SIGALRM);
ASSERT_EQ(0, g_sigsuspend_test_helper_call_count);
// We should now have a pending SIGALRM but nothing else.
sigemptyset(&pending);
ASSERT_EQ(0, sigpending(&pending));
for (size_t i = SIGNAL_MIN(); i <= SIGNAL_MAX(); ++i) {
EXPECT_EQ((i == SIGALRM), sigismember(&pending, i));
}
// Use sigsuspend to block everything except SIGALRM...
sigset_t not_SIGALRM;
sigfillset(&not_SIGALRM);
sigdelset(&not_SIGALRM, SIGALRM);
ASSERT_EQ(-1, sigsuspend(&not_SIGALRM));
ASSERT_EQ(EINTR, errno);
// ...and check that we now receive our pending SIGALRM.
ASSERT_EQ(1, g_sigsuspend_test_helper_call_count);
// Restore the original set.
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}
static void EmptySignalHandler(int) {}
static void EmptySignalAction(int, siginfo_t*, void*) {}
TEST(signal, sigaction) {
// Both bionic and glibc set SA_RESTORER when talking to the kernel on arm,
// arm64, x86, and x86-64. The version of glibc we're using also doesn't
// define SA_RESTORER, but luckily it's the same value everywhere, and mips
// doesn't use the bit for anything.
static const unsigned sa_restorer = 0x4000000;
// See what's currently set for SIGALRM.
struct sigaction original_sa;
memset(&original_sa, 0, sizeof(original_sa));
ASSERT_EQ(0, sigaction(SIGALRM, NULL, &original_sa));
ASSERT_TRUE(original_sa.sa_handler == NULL);
ASSERT_TRUE(original_sa.sa_sigaction == NULL);
ASSERT_EQ(0U, original_sa.sa_flags & ~sa_restorer);
// Set a traditional sa_handler signal handler.
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sigaddset(&sa.sa_mask, SIGALRM);
sa.sa_flags = SA_ONSTACK;
sa.sa_handler = EmptySignalHandler;
ASSERT_EQ(0, sigaction(SIGALRM, &sa, NULL));
// Check that we can read it back.
memset(&sa, 0, sizeof(sa));
ASSERT_EQ(0, sigaction(SIGALRM, NULL, &sa));
ASSERT_TRUE(sa.sa_handler == EmptySignalHandler);
ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler);
ASSERT_EQ(static_cast<unsigned>(SA_ONSTACK), sa.sa_flags & ~sa_restorer);
// Set a new-style sa_sigaction signal handler.
memset(&sa, 0, sizeof(sa));
sigaddset(&sa.sa_mask, SIGALRM);
sa.sa_flags = SA_ONSTACK | SA_SIGINFO;
sa.sa_sigaction = EmptySignalAction;
ASSERT_EQ(0, sigaction(SIGALRM, &sa, NULL));
// Check that we can read it back.
memset(&sa, 0, sizeof(sa));
ASSERT_EQ(0, sigaction(SIGALRM, NULL, &sa));
ASSERT_TRUE(sa.sa_sigaction == EmptySignalAction);
ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler);
ASSERT_EQ(static_cast<unsigned>(SA_ONSTACK | SA_SIGINFO), sa.sa_flags & ~sa_restorer);
// Put everything back how it was.
ASSERT_EQ(0, sigaction(SIGALRM, &original_sa, NULL));
}
TEST(signal, sys_signame) {
#if defined(__BIONIC__)
ASSERT_TRUE(sys_signame[0] == NULL);
ASSERT_STREQ("HUP", sys_signame[SIGHUP]);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(signal, sys_siglist) {
ASSERT_TRUE(sys_siglist[0] == NULL);
ASSERT_STREQ("Hangup", sys_siglist[SIGHUP]);
}
TEST(signal, limits) {
// This comes from the kernel.
ASSERT_EQ(32, __SIGRTMIN);
// We reserve a non-zero number at the bottom for ourselves.
ASSERT_GT(SIGRTMIN, __SIGRTMIN);
// MIPS has more signals than everyone else.
#if defined(__mips__)
ASSERT_EQ(128, __SIGRTMAX);
#else
ASSERT_EQ(64, __SIGRTMAX);
#endif
// We don't currently reserve any at the top.
ASSERT_EQ(SIGRTMAX, __SIGRTMAX);
}
static int g_sigqueue_signal_handler_call_count = 0;
static void SigqueueSignalHandler(int signum, siginfo_t* info, void*) {
ASSERT_EQ(SIGALRM, signum);
ASSERT_EQ(SIGALRM, info->si_signo);
ASSERT_EQ(SI_QUEUE, info->si_code);
ASSERT_EQ(1, info->si_value.sival_int);
++g_sigqueue_signal_handler_call_count;
}
TEST(signal, sigqueue) {
ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO);
sigval_t sigval;
sigval.sival_int = 1;
errno = 0;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
ASSERT_EQ(0, errno);
ASSERT_EQ(1, g_sigqueue_signal_handler_call_count);
}
TEST(signal, sigwaitinfo) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
// Raise SIGALRM.
sigval_t sigval;
sigval.sival_int = 1;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
// Get pending SIGALRM.
siginfo_t info;
errno = 0;
ASSERT_EQ(SIGALRM, sigwaitinfo(&just_SIGALRM, &info));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGALRM, info.si_signo);
ASSERT_EQ(1, info.si_value.sival_int);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}
TEST(signal, sigtimedwait) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
// Raise SIGALRM.
sigval_t sigval;
sigval.sival_int = 1;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
// Get pending SIGALRM.
siginfo_t info;
struct timespec timeout;
timeout.tv_sec = 2;
timeout.tv_nsec = 0;
errno = 0;
ASSERT_EQ(SIGALRM, sigtimedwait(&just_SIGALRM, &info, &timeout));
ASSERT_EQ(0, errno);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}
static int64_t NanoTime() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<int64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec;
}
TEST(signal, sigtimedwait_timeout) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
// Wait timeout.
int64_t start_time = NanoTime();
siginfo_t info;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 1000000;
errno = 0;
ASSERT_EQ(-1, sigtimedwait(&just_SIGALRM, &info, &timeout));
ASSERT_EQ(EAGAIN, errno);
ASSERT_GE(NanoTime() - start_time, 1000000);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}