platform_bionic/tests/time_test.cpp
Elliott Hughes c793bc00f5 Don't leak a thread when timer_create() fails.
We do the same thing in pthread_create().

This has the nice side-effect of letting us move part of the child setup that we were doing in the parent into the child where it belongs.

Bug: https://issuetracker.google.com/340125671
Change-Id: Ibe646d5ca9066f487d08fd40f004550349e8a02e
2024-05-21 21:35:49 +00:00

1484 lines
39 KiB
C++

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <time.h>
#include <errno.h>
#include <gtest/gtest.h>
#include <pthread.h>
#include <signal.h>
#include <sys/cdefs.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <atomic>
#include <chrono>
#include <thread>
#include "SignalUtils.h"
#include "android-base/file.h"
#include "android-base/strings.h"
#include "utils.h"
using namespace std::chrono_literals;
TEST(time, time) {
// Acquire time
time_t p1, t1 = time(&p1);
// valid?
ASSERT_NE(static_cast<time_t>(0), t1);
ASSERT_NE(static_cast<time_t>(-1), t1);
ASSERT_EQ(p1, t1);
// Acquire time one+ second later
usleep(1010000);
time_t p2, t2 = time(&p2);
// valid?
ASSERT_NE(static_cast<time_t>(0), t2);
ASSERT_NE(static_cast<time_t>(-1), t2);
ASSERT_EQ(p2, t2);
// Expect time progression
ASSERT_LT(p1, p2);
ASSERT_LE(t2 - t1, static_cast<time_t>(2));
// Expect nullptr call to produce same results
ASSERT_LE(t2, time(nullptr));
ASSERT_LE(time(nullptr) - t2, static_cast<time_t>(1));
}
TEST(time, gmtime) {
time_t t = 0;
tm* broken_down = gmtime(&t);
ASSERT_TRUE(broken_down != nullptr);
ASSERT_EQ(0, broken_down->tm_sec);
ASSERT_EQ(0, broken_down->tm_min);
ASSERT_EQ(0, broken_down->tm_hour);
ASSERT_EQ(1, broken_down->tm_mday);
ASSERT_EQ(0, broken_down->tm_mon);
ASSERT_EQ(1970, broken_down->tm_year + 1900);
}
TEST(time, gmtime_r) {
struct tm tm = {};
time_t t = 0;
struct tm* broken_down = gmtime_r(&t, &tm);
ASSERT_EQ(broken_down, &tm);
ASSERT_EQ(0, broken_down->tm_sec);
ASSERT_EQ(0, broken_down->tm_min);
ASSERT_EQ(0, broken_down->tm_hour);
ASSERT_EQ(1, broken_down->tm_mday);
ASSERT_EQ(0, broken_down->tm_mon);
ASSERT_EQ(1970, broken_down->tm_year + 1900);
}
TEST(time, mktime_TZ_as_UTC_and_offset) {
struct tm tm = {.tm_year = 70, .tm_mon = 0, .tm_mday = 1};
// This TZ value is not a valid Olson ID and is not present in tzdata file,
// but is a valid TZ string according to POSIX standard.
setenv("TZ", "UTC+08:00:00", 1);
tzset();
ASSERT_EQ(static_cast<time_t>(8 * 60 * 60), mktime(&tm));
}
static void* gmtime_no_stack_overflow_14313703_fn(void*) {
const char* original_tz = getenv("TZ");
// Ensure we'll actually have to enter tzload by using a timezone that doesn't exist.
setenv("TZ", "gmtime_stack_overflow_14313703", 1);
tzset();
if (original_tz != nullptr) {
setenv("TZ", original_tz, 1);
}
tzset();
return nullptr;
}
TEST(time, gmtime_no_stack_overflow_14313703) {
// Is it safe to call tzload on a thread with a small stack?
// http://b/14313703
// https://code.google.com/p/android/issues/detail?id=61130
pthread_attr_t a;
ASSERT_EQ(0, pthread_attr_init(&a));
ASSERT_EQ(0, pthread_attr_setstacksize(&a, PTHREAD_STACK_MIN));
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &a, gmtime_no_stack_overflow_14313703_fn, nullptr));
ASSERT_EQ(0, pthread_join(t, nullptr));
}
TEST(time, mktime_empty_TZ) {
// tzcode used to have a bug where it didn't reinitialize some internal state.
// Choose a time where DST is set.
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 1980 - 1900;
t.tm_mon = 6;
t.tm_mday = 2;
setenv("TZ", "America/Los_Angeles", 1);
tzset();
ASSERT_EQ(static_cast<time_t>(331372800U), mktime(&t));
memset(&t, 0, sizeof(tm));
t.tm_year = 1980 - 1900;
t.tm_mon = 6;
t.tm_mday = 2;
setenv("TZ", "", 1); // Implies UTC.
tzset();
ASSERT_EQ(static_cast<time_t>(331344000U), mktime(&t));
}
TEST(time, mktime_10310929) {
struct tm tm = {.tm_year = 2100 - 1900, .tm_mon = 2, .tm_mday = 10};
#if !defined(__LP64__)
// 32-bit bionic has a signed 32-bit time_t.
ASSERT_EQ(-1, mktime(&tm));
ASSERT_ERRNO(EOVERFLOW);
#else
// Everyone else should be using a signed 64-bit time_t.
ASSERT_GE(sizeof(time_t) * 8, 64U);
setenv("TZ", "America/Los_Angeles", 1);
tzset();
errno = 0;
// On the date/time specified by tm America/Los_Angeles
// follows DST. But tm_isdst is set to 0, which forces
// mktime to interpret that time as local standard, hence offset
// is 8 hours, not 7.
ASSERT_EQ(static_cast<time_t>(4108348800U), mktime(&tm));
ASSERT_ERRNO(0);
#endif
}
TEST(time, mktime_EOVERFLOW) {
setenv("TZ", "UTC", 1);
struct tm t;
memset(&t, 0, sizeof(tm));
// LP32 year range is 1901-2038, so this year is guaranteed not to overflow.
t.tm_year = 2016 - 1900;
t.tm_mon = 2;
t.tm_mday = 10;
errno = 0;
ASSERT_NE(static_cast<time_t>(-1), mktime(&t));
ASSERT_ERRNO(0);
// This will overflow for LP32.
t.tm_year = INT_MAX;
errno = 0;
#if !defined(__LP64__)
ASSERT_EQ(static_cast<time_t>(-1), mktime(&t));
ASSERT_ERRNO(EOVERFLOW);
#else
ASSERT_EQ(static_cast<time_t>(67768036166016000U), mktime(&t));
ASSERT_ERRNO(0);
#endif
// This will overflow for LP32 or LP64.
// tm_year is int, this t struct points to INT_MAX + 1 no matter what TZ is.
t.tm_year = INT_MAX;
t.tm_mon = 11;
t.tm_mday = 45;
errno = 0;
ASSERT_EQ(static_cast<time_t>(-1), mktime(&t));
ASSERT_ERRNO(EOVERFLOW);
}
TEST(time, mktime_invalid_tm_TZ_combination) {
setenv("TZ", "UTC", 1);
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 2022 - 1900;
t.tm_mon = 11;
t.tm_mday = 31;
// UTC does not observe DST
t.tm_isdst = 1;
errno = 0;
EXPECT_EQ(static_cast<time_t>(-1), mktime(&t));
// mktime sets errno to EOVERFLOW if result is unrepresentable.
EXPECT_ERRNO(EOVERFLOW);
}
// Transitions in the tzdata file are generated up to the year 2100. Testing
// that dates beyond that are handled properly too.
TEST(time, mktime_after_2100) {
struct tm tm = {.tm_year = 2150 - 1900, .tm_mon = 2, .tm_mday = 10, .tm_isdst = -1};
#if !defined(__LP64__)
// 32-bit bionic has a signed 32-bit time_t.
ASSERT_EQ(-1, mktime(&tm));
ASSERT_ERRNO(EOVERFLOW);
#else
setenv("TZ", "Europe/London", 1);
tzset();
errno = 0;
ASSERT_EQ(static_cast<time_t>(5686156800U), mktime(&tm));
ASSERT_ERRNO(0);
#endif
}
TEST(time, strftime) {
setenv("TZ", "UTC", 1);
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 200;
t.tm_mon = 2;
t.tm_mday = 10;
char buf[64];
// Seconds since the epoch.
#if defined(__BIONIC__) || defined(__LP64__) // Not 32-bit glibc.
EXPECT_EQ(10U, strftime(buf, sizeof(buf), "%s", &t));
EXPECT_STREQ("4108320000", buf);
#endif
// Date and time as text.
EXPECT_EQ(24U, strftime(buf, sizeof(buf), "%c", &t));
EXPECT_STREQ("Sun Mar 10 00:00:00 2100", buf);
}
TEST(time, strftime_second_before_epoch) {
setenv("TZ", "UTC", 1);
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 1969 - 1900;
t.tm_mon = 11;
t.tm_mday = 31;
t.tm_hour = 23;
t.tm_min = 59;
t.tm_sec = 59;
char buf[64];
EXPECT_EQ(2U, strftime(buf, sizeof(buf), "%s", &t));
EXPECT_STREQ("-1", buf);
}
TEST(time, strftime_Z_null_tm_zone) {
// Netflix on Nexus Player wouldn't start (http://b/25170306).
struct tm t;
memset(&t, 0, sizeof(tm));
char buf[64];
setenv("TZ", "America/Los_Angeles", 1);
tzset();
t.tm_isdst = 0; // "0 if Daylight Savings Time is not in effect".
EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<PST>", buf);
#if defined(__BIONIC__) // glibc 2.19 only copes with tm_isdst being 0 and 1.
t.tm_isdst = 2; // "positive if Daylight Savings Time is in effect"
EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<PDT>", buf);
t.tm_isdst = -123; // "and negative if the information is not available".
EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<>", buf);
#endif
setenv("TZ", "UTC", 1);
tzset();
t.tm_isdst = 0;
EXPECT_EQ(5U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<UTC>", buf);
#if defined(__BIONIC__) // glibc 2.19 thinks UTC DST is "UTC".
t.tm_isdst = 1; // UTC has no DST.
EXPECT_EQ(2U, strftime(buf, sizeof(buf), "<%Z>", &t));
EXPECT_STREQ("<>", buf);
#endif
}
// According to C language specification the only tm struct field needed to
// find out replacement for %z and %Z in strftime is tm_isdst. Which is
// wrong, as timezones change their standard offset and even DST savings.
// tzcode deviates from C language specification and requires tm struct either
// to be output of localtime-like functions or to be modified by mktime call
// before passing to strftime. See tz mailing discussion for more details
// https://mm.icann.org/pipermail/tz/2022-July/031674.html
// But we are testing case when tm.tm_zone is null, which means that tm struct
// is not coming from localtime and is neither modified by mktime. That's why
// we are comparing against +0000, even though America/Los_Angeles never
// observes it.
TEST(time, strftime_z_null_tm_zone) {
char str[64];
struct tm tm = {.tm_year = 109, .tm_mon = 4, .tm_mday = 2, .tm_isdst = 0};
setenv("TZ", "America/Los_Angeles", 1);
tzset();
tm.tm_zone = NULL;
size_t result = strftime(str, sizeof(str), "%z", &tm);
EXPECT_EQ(5U, result);
EXPECT_STREQ("+0000", str);
tm.tm_isdst = 1;
result = strftime(str, sizeof(str), "%z", &tm);
EXPECT_EQ(5U, result);
EXPECT_STREQ("+0000", str);
setenv("TZ", "UTC", 1);
tzset();
tm.tm_isdst = 0;
result = strftime(str, sizeof(str), "%z", &tm);
EXPECT_EQ(5U, result);
EXPECT_STREQ("+0000", str);
tm.tm_isdst = 1;
result = strftime(str, sizeof(str), "%z", &tm);
EXPECT_EQ(5U, result);
EXPECT_STREQ("+0000", str);
}
TEST(time, strftime_z_Europe_Lisbon) {
char str[64];
// During 1992-1996 Europe/Lisbon standard offset was 1 hour.
// tm_isdst is not set as it will be overridden by mktime call anyway.
struct tm tm = {.tm_year = 1996 - 1900, .tm_mon = 2, .tm_mday = 13};
setenv("TZ", "Europe/Lisbon", 1);
tzset();
// tzcode's strftime implementation for %z relies on prior mktime call.
// At the moment of writing %z value is taken from tm_gmtoff. So without
// mktime call %z is replaced with +0000.
// See https://mm.icann.org/pipermail/tz/2022-July/031674.html
mktime(&tm);
size_t result = strftime(str, sizeof(str), "%z", &tm);
EXPECT_EQ(5U, result);
EXPECT_STREQ("+0100", str);
// Now standard offset is 0.
tm = {.tm_year = 2022 - 1900, .tm_mon = 2, .tm_mday = 13};
mktime(&tm);
result = strftime(str, sizeof(str), "%z", &tm);
EXPECT_EQ(5U, result);
EXPECT_STREQ("+0000", str);
}
TEST(time, strftime_l) {
locale_t cloc = newlocale(LC_ALL, "C.UTF-8", nullptr);
locale_t old_locale = uselocale(cloc);
setenv("TZ", "UTC", 1);
struct tm t;
memset(&t, 0, sizeof(tm));
t.tm_year = 200;
t.tm_mon = 2;
t.tm_mday = 10;
// Date and time as text.
char buf[64];
EXPECT_EQ(24U, strftime_l(buf, sizeof(buf), "%c", &t, cloc));
EXPECT_STREQ("Sun Mar 10 00:00:00 2100", buf);
uselocale(old_locale);
freelocale(cloc);
}
TEST(time, strptime) {
setenv("TZ", "UTC", 1);
struct tm t;
char buf[64];
memset(&t, 0, sizeof(t));
strptime("11:14", "%R", &t);
strftime(buf, sizeof(buf), "%H:%M", &t);
EXPECT_STREQ("11:14", buf);
memset(&t, 0, sizeof(t));
strptime("09:41:53", "%T", &t);
strftime(buf, sizeof(buf), "%H:%M:%S", &t);
EXPECT_STREQ("09:41:53", buf);
}
TEST(time, strptime_l) {
#if !defined(ANDROID_HOST_MUSL)
setenv("TZ", "UTC", 1);
struct tm t;
char buf[64];
memset(&t, 0, sizeof(t));
strptime_l("11:14", "%R", &t, LC_GLOBAL_LOCALE);
strftime_l(buf, sizeof(buf), "%H:%M", &t, LC_GLOBAL_LOCALE);
EXPECT_STREQ("11:14", buf);
memset(&t, 0, sizeof(t));
strptime_l("09:41:53", "%T", &t, LC_GLOBAL_LOCALE);
strftime_l(buf, sizeof(buf), "%H:%M:%S", &t, LC_GLOBAL_LOCALE);
EXPECT_STREQ("09:41:53", buf);
#else
GTEST_SKIP() << "musl doesn't support strptime_l";
#endif
}
TEST(time, strptime_F) {
setenv("TZ", "UTC", 1);
struct tm tm = {};
ASSERT_EQ('\0', *strptime("2019-03-26", "%F", &tm));
EXPECT_EQ(119, tm.tm_year);
EXPECT_EQ(2, tm.tm_mon);
EXPECT_EQ(26, tm.tm_mday);
}
TEST(time, strptime_P_p) {
setenv("TZ", "UTC", 1);
// For parsing, %P and %p are the same: case doesn't matter.
struct tm tm = {.tm_hour = 12};
ASSERT_EQ('\0', *strptime("AM", "%p", &tm));
EXPECT_EQ(0, tm.tm_hour);
tm = {.tm_hour = 12};
ASSERT_EQ('\0', *strptime("am", "%p", &tm));
EXPECT_EQ(0, tm.tm_hour);
tm = {.tm_hour = 12};
ASSERT_EQ('\0', *strptime("AM", "%P", &tm));
EXPECT_EQ(0, tm.tm_hour);
tm = {.tm_hour = 12};
ASSERT_EQ('\0', *strptime("am", "%P", &tm));
EXPECT_EQ(0, tm.tm_hour);
}
TEST(time, strptime_u) {
setenv("TZ", "UTC", 1);
struct tm tm = {};
ASSERT_EQ('\0', *strptime("2", "%u", &tm));
EXPECT_EQ(2, tm.tm_wday);
}
TEST(time, strptime_v) {
setenv("TZ", "UTC", 1);
struct tm tm = {};
ASSERT_EQ('\0', *strptime("26-Mar-1980", "%v", &tm));
EXPECT_EQ(80, tm.tm_year);
EXPECT_EQ(2, tm.tm_mon);
EXPECT_EQ(26, tm.tm_mday);
}
TEST(time, strptime_V_G_g) {
setenv("TZ", "UTC", 1);
// %V (ISO-8601 week number), %G (year of week number, without century), and
// %g (year of week number) have no effect when parsed, and are supported
// solely so that it's possible for strptime(3) to parse everything that
// strftime(3) can output.
struct tm tm = {};
ASSERT_EQ('\0', *strptime("1 2 3", "%V %G %g", &tm));
struct tm zero = {};
EXPECT_TRUE(memcmp(&tm, &zero, sizeof(tm)) == 0);
}
TEST(time, strptime_Z) {
#if defined(__BIONIC__)
// glibc doesn't handle %Z at all.
// The BSDs only handle hard-coded "GMT" and "UTC", plus whatever two strings
// are in the global `tzname` (which correspond to the current $TZ).
struct tm tm;
setenv("TZ", "Europe/Berlin", 1);
// "GMT" always works.
tm = {};
ASSERT_EQ('\0', *strptime("GMT", "%Z", &tm));
EXPECT_STREQ("GMT", tm.tm_zone);
EXPECT_EQ(0, tm.tm_isdst);
EXPECT_EQ(0, tm.tm_gmtoff);
// As does "UTC".
tm = {};
ASSERT_EQ('\0', *strptime("UTC", "%Z", &tm));
EXPECT_STREQ("UTC", tm.tm_zone);
EXPECT_EQ(0, tm.tm_isdst);
EXPECT_EQ(0, tm.tm_gmtoff);
// Europe/Berlin is known as "CET" when there's no DST.
tm = {};
ASSERT_EQ('\0', *strptime("CET", "%Z", &tm));
EXPECT_STREQ("CET", tm.tm_zone);
EXPECT_EQ(0, tm.tm_isdst);
EXPECT_EQ(3600, tm.tm_gmtoff);
// Europe/Berlin is known as "CEST" when there's no DST.
tm = {};
ASSERT_EQ('\0', *strptime("CEST", "%Z", &tm));
EXPECT_STREQ("CEST", tm.tm_zone);
EXPECT_EQ(1, tm.tm_isdst);
EXPECT_EQ(3600, tm.tm_gmtoff);
// And as long as we're in Europe/Berlin, those are the only timezone
// abbreviations that are recognized.
tm = {};
ASSERT_TRUE(strptime("PDT", "%Z", &tm) == nullptr);
#endif
}
TEST(time, strptime_z) {
struct tm tm;
setenv("TZ", "Europe/Berlin", 1);
// "UT" is what RFC822 called UTC.
tm = {};
ASSERT_EQ('\0', *strptime("UT", "%z", &tm));
EXPECT_STREQ("UTC", tm.tm_zone);
EXPECT_EQ(0, tm.tm_isdst);
EXPECT_EQ(0, tm.tm_gmtoff);
// "GMT" is RFC822's other name for UTC.
tm = {};
ASSERT_EQ('\0', *strptime("GMT", "%z", &tm));
EXPECT_STREQ("UTC", tm.tm_zone);
EXPECT_EQ(0, tm.tm_isdst);
EXPECT_EQ(0, tm.tm_gmtoff);
// "Z" ("Zulu") is a synonym for UTC.
tm = {};
ASSERT_EQ('\0', *strptime("Z", "%z", &tm));
EXPECT_STREQ("UTC", tm.tm_zone);
EXPECT_EQ(0, tm.tm_isdst);
EXPECT_EQ(0, tm.tm_gmtoff);
// "PST"/"PDT" and the other common US zone abbreviations are all supported.
tm = {};
ASSERT_EQ('\0', *strptime("PST", "%z", &tm));
EXPECT_STREQ("PST", tm.tm_zone);
EXPECT_EQ(0, tm.tm_isdst);
EXPECT_EQ(-28800, tm.tm_gmtoff);
tm = {};
ASSERT_EQ('\0', *strptime("PDT", "%z", &tm));
EXPECT_STREQ("PDT", tm.tm_zone);
EXPECT_EQ(1, tm.tm_isdst);
EXPECT_EQ(-25200, tm.tm_gmtoff);
// +-hh
tm = {};
ASSERT_EQ('\0', *strptime("+01", "%z", &tm));
EXPECT_EQ(3600, tm.tm_gmtoff);
EXPECT_TRUE(tm.tm_zone == nullptr);
EXPECT_EQ(0, tm.tm_isdst);
// +-hhmm
tm = {};
ASSERT_EQ('\0', *strptime("+0130", "%z", &tm));
EXPECT_EQ(5400, tm.tm_gmtoff);
EXPECT_TRUE(tm.tm_zone == nullptr);
EXPECT_EQ(0, tm.tm_isdst);
// +-hh:mm
tm = {};
ASSERT_EQ('\0', *strptime("+01:30", "%z", &tm));
EXPECT_EQ(5400, tm.tm_gmtoff);
EXPECT_TRUE(tm.tm_zone == nullptr);
EXPECT_EQ(0, tm.tm_isdst);
}
void SetTime(timer_t t, time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) {
itimerspec ts;
ts.it_value.tv_sec = value_s;
ts.it_value.tv_nsec = value_ns;
ts.it_interval.tv_sec = interval_s;
ts.it_interval.tv_nsec = interval_ns;
ASSERT_EQ(0, timer_settime(t, 0, &ts, nullptr));
}
static void NoOpNotifyFunction(sigval) {
}
TEST(time, timer_create) {
sigevent se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
// Timers are not inherited by the child.
ASSERT_EQ(-1, timer_delete(timer_id));
ASSERT_ERRNO(EINVAL);
_exit(0);
}
AssertChildExited(pid, 0);
ASSERT_EQ(0, timer_delete(timer_id));
}
static int timer_create_SIGEV_SIGNAL_signal_handler_invocation_count;
static void timer_create_SIGEV_SIGNAL_signal_handler(int signal_number) {
++timer_create_SIGEV_SIGNAL_signal_handler_invocation_count;
ASSERT_EQ(SIGUSR1, signal_number);
}
TEST(time, timer_create_SIGEV_SIGNAL) {
sigevent se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_SIGNAL;
se.sigev_signo = SIGUSR1;
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
timer_create_SIGEV_SIGNAL_signal_handler_invocation_count = 0;
ScopedSignalHandler ssh(SIGUSR1, timer_create_SIGEV_SIGNAL_signal_handler);
ASSERT_EQ(0, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count);
itimerspec ts;
ts.it_value.tv_sec = 0;
ts.it_value.tv_nsec = 1;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ASSERT_EQ(0, timer_settime(timer_id, 0, &ts, nullptr));
usleep(500000);
ASSERT_EQ(1, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count);
}
struct Counter {
private:
std::atomic<int> value;
timer_t timer_id;
sigevent se;
bool timer_valid;
void Create() {
ASSERT_FALSE(timer_valid);
ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &timer_id));
timer_valid = true;
}
public:
explicit Counter(void (*fn)(sigval)) : value(0), timer_valid(false) {
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = fn;
se.sigev_value.sival_ptr = this;
Create();
}
void DeleteTimer() {
ASSERT_TRUE(timer_valid);
ASSERT_EQ(0, timer_delete(timer_id));
timer_valid = false;
}
~Counter() {
if (timer_valid) {
DeleteTimer();
}
}
int Value() const {
return value;
}
void SetTime(time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) {
::SetTime(timer_id, value_s, value_ns, interval_s, interval_ns);
}
bool ValueUpdated() {
int current_value = value;
time_t start = time(nullptr);
while (current_value == value && (time(nullptr) - start) < 5) {
}
return current_value != value;
}
static void CountNotifyFunction(sigval value) {
Counter* cd = reinterpret_cast<Counter*>(value.sival_ptr);
++cd->value;
}
static void CountAndDisarmNotifyFunction(sigval value) {
Counter* cd = reinterpret_cast<Counter*>(value.sival_ptr);
++cd->value;
// Setting the initial expiration time to 0 disarms the timer.
cd->SetTime(0, 0, 1, 0);
}
};
TEST(time, timer_settime_0) {
Counter counter(Counter::CountAndDisarmNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 500000000, 1, 0);
sleep(1);
// The count should just be 1 because we disarmed the timer the first time it fired.
ASSERT_EQ(1, counter.Value());
}
TEST(time, timer_settime_repeats) {
Counter counter(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 1, 0, 10);
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
counter.DeleteTimer();
// Add a sleep as other threads may be calling the callback function when the timer is deleted.
usleep(500000);
}
static int timer_create_NULL_signal_handler_invocation_count;
static void timer_create_NULL_signal_handler(int signal_number) {
++timer_create_NULL_signal_handler_invocation_count;
ASSERT_EQ(SIGALRM, signal_number);
}
TEST(time, timer_create_NULL) {
// A NULL sigevent* is equivalent to asking for SIGEV_SIGNAL for SIGALRM.
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, nullptr, &timer_id));
timer_create_NULL_signal_handler_invocation_count = 0;
ScopedSignalHandler ssh(SIGALRM, timer_create_NULL_signal_handler);
ASSERT_EQ(0, timer_create_NULL_signal_handler_invocation_count);
SetTime(timer_id, 0, 1, 0, 0);
usleep(500000);
ASSERT_EQ(1, timer_create_NULL_signal_handler_invocation_count);
}
static int GetThreadCount() {
std::string status;
if (android::base::ReadFileToString("/proc/self/status", &status)) {
for (const auto& line : android::base::Split(status, "\n")) {
int thread_count;
if (sscanf(line.c_str(), "Threads: %d", &thread_count) == 1) {
return thread_count;
}
}
}
return -1;
}
TEST(time, timer_create_EINVAL) {
const clockid_t kInvalidClock = 16;
// A SIGEV_SIGNAL timer failure is easy; that's the kernel's problem.
timer_t timer_id;
ASSERT_EQ(-1, timer_create(kInvalidClock, nullptr, &timer_id));
ASSERT_ERRNO(EINVAL);
// A SIGEV_THREAD timer failure is more interesting because we have a thread
// to clean up (https://issuetracker.google.com/340125671).
sigevent se = {};
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
ASSERT_EQ(-1, timer_create(kInvalidClock, &se, &timer_id));
ASSERT_ERRNO(EINVAL);
// timer_create() doesn't guarantee that the thread will be dead _before_
// it returns because that would require extra synchronization that's
// unnecessary in the normal (successful) case. A timeout here means we
// leaked a thread.
while (GetThreadCount() > 1) {
}
}
TEST(time, timer_create_multiple) {
Counter counter1(Counter::CountNotifyFunction);
Counter counter2(Counter::CountNotifyFunction);
Counter counter3(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter1.Value());
ASSERT_EQ(0, counter2.Value());
ASSERT_EQ(0, counter3.Value());
counter2.SetTime(0, 500000000, 0, 0);
sleep(1);
EXPECT_EQ(0, counter1.Value());
EXPECT_EQ(1, counter2.Value());
EXPECT_EQ(0, counter3.Value());
}
// Test to verify that disarming a repeatable timer disables the callbacks.
TEST(time, timer_disarm_terminates) {
Counter counter(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 1, 0, 1);
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
counter.SetTime(0, 0, 0, 0);
// Add a sleep as the kernel may have pending events when the timer is disarmed.
usleep(500000);
int value = counter.Value();
usleep(500000);
// Verify the counter has not been incremented.
ASSERT_EQ(value, counter.Value());
}
// Test to verify that deleting a repeatable timer disables the callbacks.
TEST(time, timer_delete_terminates) {
Counter counter(Counter::CountNotifyFunction);
ASSERT_EQ(0, counter.Value());
counter.SetTime(0, 1, 0, 1);
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
ASSERT_TRUE(counter.ValueUpdated());
counter.DeleteTimer();
// Add a sleep as other threads may be calling the callback function when the timer is deleted.
usleep(500000);
int value = counter.Value();
usleep(500000);
// Verify the counter has not been incremented.
ASSERT_EQ(value, counter.Value());
}
struct TimerDeleteData {
timer_t timer_id;
pid_t tid;
volatile bool complete;
};
static void TimerDeleteCallback(sigval value) {
TimerDeleteData* tdd = reinterpret_cast<TimerDeleteData*>(value.sival_ptr);
tdd->tid = gettid();
timer_delete(tdd->timer_id);
tdd->complete = true;
}
TEST(time, timer_delete_from_timer_thread) {
TimerDeleteData tdd;
sigevent se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = TimerDeleteCallback;
se.sigev_value.sival_ptr = &tdd;
tdd.complete = false;
ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &tdd.timer_id));
itimerspec ts;
ts.it_value.tv_sec = 1;
ts.it_value.tv_nsec = 0;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ASSERT_EQ(0, timer_settime(tdd.timer_id, 0, &ts, nullptr));
time_t cur_time = time(nullptr);
while (!tdd.complete && (time(nullptr) - cur_time) < 5);
ASSERT_TRUE(tdd.complete);
#if defined(__BIONIC__)
// Since bionic timers are implemented by creating a thread to handle the
// callback, verify that the thread actually completes.
cur_time = time(NULL);
while ((kill(tdd.tid, 0) != -1 || errno != ESRCH) && (time(NULL) - cur_time) < 5);
ASSERT_EQ(-1, kill(tdd.tid, 0));
ASSERT_ERRNO(ESRCH);
#endif
}
// Musl doesn't define __NR_clock_gettime on 32-bit architectures.
#if !defined(__NR_clock_gettime)
#define __NR_clock_gettime __NR_clock_gettime32
#endif
TEST(time, clock_gettime) {
// Try to ensure that our vdso clock_gettime is working.
timespec ts0;
timespec ts1;
timespec ts2;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts0));
ASSERT_EQ(0, syscall(__NR_clock_gettime, CLOCK_MONOTONIC, &ts1));
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts2));
// Check we have a nice monotonic timestamp sandwich.
ASSERT_LE(ts0.tv_sec, ts1.tv_sec);
if (ts0.tv_sec == ts1.tv_sec) {
ASSERT_LE(ts0.tv_nsec, ts1.tv_nsec);
}
ASSERT_LE(ts1.tv_sec, ts2.tv_sec);
if (ts1.tv_sec == ts2.tv_sec) {
ASSERT_LE(ts1.tv_nsec, ts2.tv_nsec);
}
}
TEST(time, clock_gettime_CLOCK_REALTIME) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
}
TEST(time, clock_gettime_CLOCK_MONOTONIC) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
}
TEST(time, clock_gettime_CLOCK_PROCESS_CPUTIME_ID) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts));
}
TEST(time, clock_gettime_CLOCK_THREAD_CPUTIME_ID) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts));
}
TEST(time, clock_gettime_CLOCK_BOOTTIME) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_BOOTTIME, &ts));
}
TEST(time, clock_gettime_unknown) {
errno = 0;
timespec ts;
ASSERT_EQ(-1, clock_gettime(-1, &ts));
ASSERT_ERRNO(EINVAL);
}
TEST(time, clock_getres_CLOCK_REALTIME) {
timespec ts;
ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, &ts));
ASSERT_EQ(1, ts.tv_nsec);
ASSERT_EQ(0, ts.tv_sec);
}
TEST(time, clock_getres_CLOCK_MONOTONIC) {
timespec ts;
ASSERT_EQ(0, clock_getres(CLOCK_MONOTONIC, &ts));
ASSERT_EQ(1, ts.tv_nsec);
ASSERT_EQ(0, ts.tv_sec);
}
TEST(time, clock_getres_CLOCK_PROCESS_CPUTIME_ID) {
timespec ts;
ASSERT_EQ(0, clock_getres(CLOCK_PROCESS_CPUTIME_ID, &ts));
}
TEST(time, clock_getres_CLOCK_THREAD_CPUTIME_ID) {
timespec ts;
ASSERT_EQ(0, clock_getres(CLOCK_THREAD_CPUTIME_ID, &ts));
}
TEST(time, clock_getres_CLOCK_BOOTTIME) {
timespec ts;
ASSERT_EQ(0, clock_getres(CLOCK_BOOTTIME, &ts));
ASSERT_EQ(1, ts.tv_nsec);
ASSERT_EQ(0, ts.tv_sec);
}
TEST(time, clock_getres_unknown) {
errno = 0;
timespec ts = { -1, -1 };
ASSERT_EQ(-1, clock_getres(-1, &ts));
ASSERT_ERRNO(EINVAL);
ASSERT_EQ(-1, ts.tv_nsec);
ASSERT_EQ(-1, ts.tv_sec);
}
TEST(time, clock_getres_null_resolution) {
ASSERT_EQ(0, clock_getres(CLOCK_REALTIME, nullptr));
}
TEST(time, clock) {
// clock(3) is hard to test, but a 1s sleep should cost less than 10ms on average.
static const clock_t N = 5;
static const clock_t mean_limit_ms = 10;
clock_t t0 = clock();
for (size_t i = 0; i < N; ++i) {
sleep(1);
}
clock_t t1 = clock();
ASSERT_LT(t1 - t0, N * mean_limit_ms * (CLOCKS_PER_SEC / 1000));
}
static pid_t GetInvalidPid() {
std::unique_ptr<FILE, decltype(&fclose)> fp{fopen("/proc/sys/kernel/pid_max", "r"), fclose};
long pid_max;
fscanf(fp.get(), "%ld", &pid_max);
return static_cast<pid_t>(pid_max + 1);
}
TEST(time, clock_getcpuclockid_current) {
clockid_t clockid;
ASSERT_EQ(0, clock_getcpuclockid(getpid(), &clockid));
timespec ts;
ASSERT_EQ(0, clock_gettime(clockid, &ts));
}
TEST(time, clock_getcpuclockid_parent) {
clockid_t clockid;
ASSERT_EQ(0, clock_getcpuclockid(getppid(), &clockid));
timespec ts;
ASSERT_EQ(0, clock_gettime(clockid, &ts));
}
TEST(time, clock_getcpuclockid_ESRCH) {
// We can't use -1 for invalid pid here, because clock_getcpuclockid() can't detect it.
errno = 0;
// If this fails, your kernel needs commit e1b6b6ce to be backported.
clockid_t clockid;
ASSERT_EQ(ESRCH, clock_getcpuclockid(GetInvalidPid(), &clockid)) << "\n"
<< "Please ensure that the following kernel patches or their replacements have been applied:\n"
<< "* https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/"
<< "commit/?id=e1b6b6ce55a0a25c8aa8af019095253b2133a41a\n"
<< "* https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/"
<< "commit/?id=c80ed088a519da53f27b798a69748eaabc66aadf\n";
ASSERT_ERRNO(0);
}
TEST(time, clock_settime) {
errno = 0;
timespec ts;
ASSERT_EQ(-1, clock_settime(-1, &ts));
ASSERT_ERRNO(EINVAL);
}
TEST(time, clock_nanosleep_EINVAL) {
timespec in;
timespec out;
ASSERT_EQ(EINVAL, clock_nanosleep(-1, 0, &in, &out));
}
TEST(time, clock_nanosleep_thread_cputime_id) {
timespec in;
in.tv_sec = 1;
in.tv_nsec = 0;
ASSERT_EQ(EINVAL, clock_nanosleep(CLOCK_THREAD_CPUTIME_ID, 0, &in, nullptr));
}
TEST(time, clock_nanosleep) {
auto t0 = std::chrono::steady_clock::now();
const timespec ts = {.tv_nsec = 5000000};
ASSERT_EQ(0, clock_nanosleep(CLOCK_MONOTONIC, 0, &ts, nullptr));
auto t1 = std::chrono::steady_clock::now();
ASSERT_GE(t1-t0, 5000000ns);
}
TEST(time, nanosleep) {
auto t0 = std::chrono::steady_clock::now();
const timespec ts = {.tv_nsec = 5000000};
ASSERT_EQ(0, nanosleep(&ts, nullptr));
auto t1 = std::chrono::steady_clock::now();
ASSERT_GE(t1-t0, 5000000ns);
}
TEST(time, nanosleep_EINVAL) {
timespec ts = {.tv_sec = -1};
errno = 0;
ASSERT_EQ(-1, nanosleep(&ts, nullptr));
ASSERT_ERRNO(EINVAL);
}
TEST(time, bug_31938693) {
// User-visible symptoms in N:
// http://b/31938693
// https://code.google.com/p/android/issues/detail?id=225132
// Actual underlying bug (the code change, not the tzdata upgrade that first exposed the bug):
// http://b/31848040
// This isn't a great test, because very few timezones were actually affected, and there's
// no real logic to which ones were affected: it was just a coincidence of the data that came
// after them in the tzdata file.
time_t t = 1475619727;
struct tm tm;
setenv("TZ", "America/Los_Angeles", 1);
tzset();
ASSERT_TRUE(localtime_r(&t, &tm) != nullptr);
EXPECT_EQ(15, tm.tm_hour);
setenv("TZ", "Europe/London", 1);
tzset();
ASSERT_TRUE(localtime_r(&t, &tm) != nullptr);
EXPECT_EQ(23, tm.tm_hour);
setenv("TZ", "America/Atka", 1);
tzset();
ASSERT_TRUE(localtime_r(&t, &tm) != nullptr);
EXPECT_EQ(13, tm.tm_hour);
setenv("TZ", "Pacific/Apia", 1);
tzset();
ASSERT_TRUE(localtime_r(&t, &tm) != nullptr);
EXPECT_EQ(12, tm.tm_hour);
setenv("TZ", "Pacific/Honolulu", 1);
tzset();
ASSERT_TRUE(localtime_r(&t, &tm) != nullptr);
EXPECT_EQ(12, tm.tm_hour);
setenv("TZ", "Asia/Magadan", 1);
tzset();
ASSERT_TRUE(localtime_r(&t, &tm) != nullptr);
EXPECT_EQ(9, tm.tm_hour);
}
TEST(time, bug_31339449) {
// POSIX says localtime acts as if it calls tzset.
// tzset does two things:
// 1. it sets the timezone ctime/localtime/mktime/strftime will use.
// 2. it sets the global `tzname`.
// POSIX says localtime_r need not set `tzname` (2).
// Q: should localtime_r set the timezone (1)?
// Upstream tzcode (and glibc) answer "no", everyone else answers "yes".
// Pick a time, any time...
time_t t = 1475619727;
// Call tzset with a specific timezone.
setenv("TZ", "America/Atka", 1);
tzset();
// If we change the timezone and call localtime, localtime should use the new timezone.
setenv("TZ", "America/Los_Angeles", 1);
struct tm* tm_p = localtime(&t);
EXPECT_EQ(15, tm_p->tm_hour);
// Reset the timezone back.
setenv("TZ", "America/Atka", 1);
tzset();
#if defined(__BIONIC__)
// If we change the timezone again and call localtime_r, localtime_r should use the new timezone.
setenv("TZ", "America/Los_Angeles", 1);
struct tm tm = {};
localtime_r(&t, &tm);
EXPECT_EQ(15, tm.tm_hour);
#else
// The BSDs agree with us, but glibc gets this wrong.
#endif
}
TEST(time, asctime) {
const struct tm tm = {};
ASSERT_STREQ("Sun Jan 0 00:00:00 1900\n", asctime(&tm));
}
TEST(time, asctime_r) {
const struct tm tm = {};
char buf[256];
ASSERT_EQ(buf, asctime_r(&tm, buf));
ASSERT_STREQ("Sun Jan 0 00:00:00 1900\n", buf);
}
TEST(time, ctime) {
setenv("TZ", "UTC", 1);
const time_t t = 0;
ASSERT_STREQ("Thu Jan 1 00:00:00 1970\n", ctime(&t));
}
TEST(time, ctime_r) {
setenv("TZ", "UTC", 1);
const time_t t = 0;
char buf[256];
ASSERT_EQ(buf, ctime_r(&t, buf));
ASSERT_STREQ("Thu Jan 1 00:00:00 1970\n", buf);
}
// https://issuetracker.google.com/37128336
TEST(time, strftime_strptime_s) {
char buf[32];
const struct tm tm0 = { .tm_year = 1982-1900, .tm_mon = 0, .tm_mday = 1 };
setenv("TZ", "America/Los_Angeles", 1);
strftime(buf, sizeof(buf), "<%s>", &tm0);
EXPECT_STREQ("<378720000>", buf);
setenv("TZ", "UTC", 1);
strftime(buf, sizeof(buf), "<%s>", &tm0);
EXPECT_STREQ("<378691200>", buf);
struct tm tm;
setenv("TZ", "America/Los_Angeles", 1);
tzset();
memset(&tm, 0xff, sizeof(tm));
char* p = strptime("378720000x", "%s", &tm);
ASSERT_EQ('x', *p);
EXPECT_EQ(0, tm.tm_sec);
EXPECT_EQ(0, tm.tm_min);
EXPECT_EQ(0, tm.tm_hour);
EXPECT_EQ(1, tm.tm_mday);
EXPECT_EQ(0, tm.tm_mon);
EXPECT_EQ(82, tm.tm_year);
EXPECT_EQ(5, tm.tm_wday);
EXPECT_EQ(0, tm.tm_yday);
EXPECT_EQ(0, tm.tm_isdst);
setenv("TZ", "UTC", 1);
tzset();
memset(&tm, 0xff, sizeof(tm));
p = strptime("378691200x", "%s", &tm);
ASSERT_EQ('x', *p);
EXPECT_EQ(0, tm.tm_sec);
EXPECT_EQ(0, tm.tm_min);
EXPECT_EQ(0, tm.tm_hour);
EXPECT_EQ(1, tm.tm_mday);
EXPECT_EQ(0, tm.tm_mon);
EXPECT_EQ(82, tm.tm_year);
EXPECT_EQ(5, tm.tm_wday);
EXPECT_EQ(0, tm.tm_yday);
EXPECT_EQ(0, tm.tm_isdst);
}
TEST(time, strptime_s_nothing) {
struct tm tm;
ASSERT_EQ(nullptr, strptime("x", "%s", &tm));
}
TEST(time, timespec_get) {
#if defined(__BIONIC__)
timespec ts = {};
ASSERT_EQ(TIME_UTC, timespec_get(&ts, TIME_UTC));
ASSERT_EQ(TIME_MONOTONIC, timespec_get(&ts, TIME_MONOTONIC));
ASSERT_EQ(TIME_ACTIVE, timespec_get(&ts, TIME_ACTIVE));
ASSERT_EQ(TIME_THREAD_ACTIVE, timespec_get(&ts, TIME_THREAD_ACTIVE));
#else
GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21";
#endif
}
TEST(time, timespec_get_invalid) {
#if defined(__BIONIC__)
timespec ts = {};
ASSERT_EQ(0, timespec_get(&ts, 123));
#else
GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21";
#endif
}
TEST(time, timespec_getres) {
#if defined(__BIONIC__)
timespec ts = {};
ASSERT_EQ(TIME_UTC, timespec_getres(&ts, TIME_UTC));
ASSERT_EQ(1, ts.tv_nsec);
ASSERT_EQ(0, ts.tv_sec);
#else
GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21";
#endif
}
TEST(time, timespec_getres_invalid) {
#if defined(__BIONIC__)
timespec ts = {};
ASSERT_EQ(0, timespec_getres(&ts, 123));
#else
GTEST_SKIP() << "glibc doesn't have timespec_get until 2.21";
#endif
}
TEST(time, difftime) {
ASSERT_EQ(1.0, difftime(1, 0));
ASSERT_EQ(-1.0, difftime(0, 1));
}
TEST(time, tzfree_null) {
#if defined(__BIONIC__)
tzfree(nullptr);
#else
GTEST_SKIP() << "glibc doesn't have timezone_t";
#endif
}
TEST(time, localtime_rz) {
#if defined(__BIONIC__)
setenv("TZ", "America/Los_Angeles", 1);
tzset();
auto AssertTmEq = [](const struct tm& rhs, int hour) {
ASSERT_EQ(93, rhs.tm_year);
ASSERT_EQ(0, rhs.tm_mon);
ASSERT_EQ(1, rhs.tm_mday);
ASSERT_EQ(hour, rhs.tm_hour);
ASSERT_EQ(0, rhs.tm_min);
ASSERT_EQ(0, rhs.tm_sec);
};
const time_t t = 725875200;
// Spam localtime_r() while we use localtime_rz().
std::atomic<bool> done = false;
std::thread thread{[&] {
while (!done) {
struct tm tm {};
ASSERT_EQ(&tm, localtime_r(&t, &tm));
AssertTmEq(tm, 0);
}
}};
struct tm tm;
timezone_t london{tzalloc("Europe/London")};
tm = {};
ASSERT_EQ(&tm, localtime_rz(london, &t, &tm));
AssertTmEq(tm, 8);
timezone_t seoul{tzalloc("Asia/Seoul")};
tm = {};
ASSERT_EQ(&tm, localtime_rz(seoul, &t, &tm));
AssertTmEq(tm, 17);
// Just check that mktime()'s timezone didn't change.
tm = {};
ASSERT_EQ(&tm, localtime_r(&t, &tm));
ASSERT_EQ(0, tm.tm_hour);
AssertTmEq(tm, 0);
done = true;
thread.join();
tzfree(london);
tzfree(seoul);
#else
GTEST_SKIP() << "glibc doesn't have timezone_t";
#endif
}
TEST(time, mktime_z) {
#if defined(__BIONIC__)
setenv("TZ", "America/Los_Angeles", 1);
tzset();
// Spam mktime() while we use mktime_z().
std::atomic<bool> done = false;
std::thread thread{[&done] {
while (!done) {
struct tm tm {
.tm_year = 93, .tm_mday = 1
};
ASSERT_EQ(725875200, mktime(&tm));
}
}};
struct tm tm;
timezone_t london{tzalloc("Europe/London")};
tm = {.tm_year = 93, .tm_mday = 1};
ASSERT_EQ(725846400, mktime_z(london, &tm));
timezone_t seoul{tzalloc("Asia/Seoul")};
tm = {.tm_year = 93, .tm_mday = 1};
ASSERT_EQ(725814000, mktime_z(seoul, &tm));
// Just check that mktime()'s timezone didn't change.
tm = {.tm_year = 93, .tm_mday = 1};
ASSERT_EQ(725875200, mktime(&tm));
done = true;
thread.join();
tzfree(london);
tzfree(seoul);
#else
GTEST_SKIP() << "glibc doesn't have timezone_t";
#endif
}
TEST(time, tzalloc_nullptr) {
#if defined(__BIONIC__)
// tzalloc(nullptr) returns the system timezone.
timezone_t default_tz = tzalloc(nullptr);
ASSERT_NE(nullptr, default_tz);
// Check that mktime_z() with the default timezone matches mktime().
// This assumes that the system timezone doesn't change during the test,
// but that should be unlikely, and we don't have much choice if we
// want to write a test at all.
// We unset $TZ before calling mktime() because mktime() honors $TZ.
unsetenv("TZ");
struct tm tm = {.tm_year = 93, .tm_mday = 1};
time_t t = mktime(&tm);
ASSERT_EQ(t, mktime_z(default_tz, &tm));
// Check that changing $TZ doesn't affect the tzalloc() default in
// the same way it would the mktime() default.
setenv("TZ", "America/Los_Angeles", 1);
tzset();
ASSERT_EQ(t, mktime_z(default_tz, &tm));
setenv("TZ", "Europe/London", 1);
tzset();
ASSERT_EQ(t, mktime_z(default_tz, &tm));
setenv("TZ", "Asia/Seoul", 1);
tzset();
ASSERT_EQ(t, mktime_z(default_tz, &tm));
tzfree(default_tz);
#else
GTEST_SKIP() << "glibc doesn't have timezone_t";
#endif
}
TEST(time, tzalloc_unique_ptr) {
#if defined(__BIONIC__)
std::unique_ptr<std::remove_pointer_t<timezone_t>, decltype(&tzfree)> tz{tzalloc("Asia/Seoul"),
tzfree};
#else
GTEST_SKIP() << "glibc doesn't have timezone_t";
#endif
}