c6b5bcd182
As a follow up to Ibba98f5d88be1c306d14e9b9366302ecbef6d534, where we added a work around to convert the CLOCK_REALTIME timeouts to CLOCK_MONOTONIC for pthread and semaphore timed wait functions, we're introducing a set of _monotonic_np versions of each of these functions that wait on CLOCK_MONOTONIC directly. The primary motivation here is that while the above work around helps for 3rd party code, it creates a dilemma when implementing new code that would use these functions: either one implements code with these functions knowing there is a race condition possible or one avoids these functions and reinvent their own waiting/signaling mechanisms. Neither are satisfactory, so we create a third option to use these Android specific _monotonic_np functions that completely remove the race condition while keeping the rest of the interface. Specifically this adds the below functions: pthread_mutex_timedlock_monotonic_np() pthread_cond_timedwait_monotonic_np() pthread_rwlock_timedrdlock_monotonic_np() pthread_rwlock_timedwrlock_monotonic_np() sem_timedwait_monotonic_np() Note that pthread_cond_timedwait_monotonic_np() previously existed and was removed since it's possible to initialize a condition variable to use CLOCK_MONOTONIC. It is added back for a mix of reasons, 1) Symmetry with the rest of the functions we're adding 2) libc++ cannot easily take advantage of the new initializer, but will be able to use this function in order to wait on std::steady_clock 3) Frankly, it's a better API to specify the clock in the waiter function than to specify the clock when the condition variable is initialized. Bug: 73951740 Test: new unit tests Change-Id: I23aa5c204e36a194237d41e064c5c8ccaa4204e3
246 lines
9.3 KiB
C++
246 lines
9.3 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <stdatomic.h>
|
|
#include <sys/mman.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include "pthread_internal.h"
|
|
|
|
#include "private/bionic_futex.h"
|
|
#include "private/bionic_time_conversions.h"
|
|
#include "private/bionic_tls.h"
|
|
|
|
// XXX *technically* there is a race condition that could allow
|
|
// XXX a signal to be missed. If thread A is preempted in _wait()
|
|
// XXX after unlocking the mutex and before waiting, and if other
|
|
// XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
|
|
// XXX before thread A is scheduled again and calls futex_wait(),
|
|
// XXX then the signal will be lost.
|
|
|
|
// We use one bit in pthread_condattr_t (long) values as the 'shared' flag
|
|
// and one bit for the clock type (CLOCK_REALTIME is 0 and
|
|
// CLOCK_MONOTONIC is 1). The rest of the bits are a counter.
|
|
//
|
|
// The 'value' field in pthread_cond_t has the same layout.
|
|
|
|
#define COND_SHARED_MASK 0x0001
|
|
#define COND_CLOCK_MASK 0x0002
|
|
#define COND_COUNTER_STEP 0x0004
|
|
#define COND_FLAGS_MASK (COND_SHARED_MASK | COND_CLOCK_MASK)
|
|
#define COND_COUNTER_MASK (~COND_FLAGS_MASK)
|
|
|
|
#define COND_IS_SHARED(c) (((c) & COND_SHARED_MASK) != 0)
|
|
#define COND_GET_CLOCK(c) (((c) & COND_CLOCK_MASK) >> 1)
|
|
#define COND_SET_CLOCK(attr, c) ((attr) | (c << 1))
|
|
|
|
int pthread_condattr_init(pthread_condattr_t* attr) {
|
|
*attr = 0;
|
|
*attr |= PTHREAD_PROCESS_PRIVATE;
|
|
*attr |= (CLOCK_REALTIME << 1);
|
|
return 0;
|
|
}
|
|
|
|
int pthread_condattr_getpshared(const pthread_condattr_t* attr, int* pshared) {
|
|
*pshared = static_cast<int>(COND_IS_SHARED(*attr));
|
|
return 0;
|
|
}
|
|
|
|
int pthread_condattr_setpshared(pthread_condattr_t* attr, int pshared) {
|
|
if (pshared != PTHREAD_PROCESS_SHARED && pshared != PTHREAD_PROCESS_PRIVATE) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*attr |= pshared;
|
|
return 0;
|
|
}
|
|
|
|
int pthread_condattr_getclock(const pthread_condattr_t* attr, clockid_t* clock) {
|
|
*clock = COND_GET_CLOCK(*attr);
|
|
return 0;
|
|
}
|
|
|
|
int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock) {
|
|
if (clock != CLOCK_MONOTONIC && clock != CLOCK_REALTIME) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*attr = COND_SET_CLOCK(*attr, clock);
|
|
return 0;
|
|
}
|
|
|
|
int pthread_condattr_destroy(pthread_condattr_t* attr) {
|
|
*attr = 0xdeada11d;
|
|
return 0;
|
|
}
|
|
|
|
struct pthread_cond_internal_t {
|
|
atomic_uint state;
|
|
|
|
bool process_shared() {
|
|
return COND_IS_SHARED(atomic_load_explicit(&state, memory_order_relaxed));
|
|
}
|
|
|
|
bool use_realtime_clock() {
|
|
return COND_GET_CLOCK(atomic_load_explicit(&state, memory_order_relaxed)) == CLOCK_REALTIME;
|
|
}
|
|
|
|
#if defined(__LP64__)
|
|
char __reserved[44];
|
|
#endif
|
|
};
|
|
|
|
static_assert(sizeof(pthread_cond_t) == sizeof(pthread_cond_internal_t),
|
|
"pthread_cond_t should actually be pthread_cond_internal_t in implementation.");
|
|
|
|
// For binary compatibility with old version of pthread_cond_t, we can't use more strict alignment
|
|
// than 4-byte alignment.
|
|
static_assert(alignof(pthread_cond_t) == 4,
|
|
"pthread_cond_t should fulfill the alignment requirement of pthread_cond_internal_t.");
|
|
|
|
static pthread_cond_internal_t* __get_internal_cond(pthread_cond_t* cond_interface) {
|
|
return reinterpret_cast<pthread_cond_internal_t*>(cond_interface);
|
|
}
|
|
|
|
int pthread_cond_init(pthread_cond_t* cond_interface, const pthread_condattr_t* attr) {
|
|
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
|
|
|
|
unsigned int init_state = 0;
|
|
if (attr != NULL) {
|
|
init_state = (*attr & COND_FLAGS_MASK);
|
|
}
|
|
atomic_init(&cond->state, init_state);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pthread_cond_destroy(pthread_cond_t* cond_interface) {
|
|
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
|
|
atomic_store_explicit(&cond->state, 0xdeadc04d, memory_order_relaxed);
|
|
return 0;
|
|
}
|
|
|
|
// This function is used by pthread_cond_broadcast and
|
|
// pthread_cond_signal to atomically decrement the counter
|
|
// then wake up thread_count threads.
|
|
static int __pthread_cond_pulse(pthread_cond_internal_t* cond, int thread_count) {
|
|
// We don't use a release/seq_cst fence here. Because pthread_cond_wait/signal can't be
|
|
// used as a method for memory synchronization by itself. It should always be used with
|
|
// pthread mutexes. Note that Spurious wakeups from pthread_cond_wait/timedwait may occur,
|
|
// so when using condition variables there is always a boolean predicate involving shared
|
|
// variables associated with each condition wait that is true if the thread should proceed.
|
|
// If the predicate is seen true before a condition wait, pthread_cond_wait/timedwait will
|
|
// not be called. That's why pthread_wait/signal pair can't be used as a method for memory
|
|
// synchronization. And it doesn't help even if we use any fence here.
|
|
|
|
// The increase of value should leave flags alone, even if the value can overflows.
|
|
atomic_fetch_add_explicit(&cond->state, COND_COUNTER_STEP, memory_order_relaxed);
|
|
|
|
__futex_wake_ex(&cond->state, cond->process_shared(), thread_count);
|
|
return 0;
|
|
}
|
|
|
|
static int __pthread_cond_timedwait(pthread_cond_internal_t* cond, pthread_mutex_t* mutex,
|
|
bool use_realtime_clock, const timespec* abs_timeout_or_null) {
|
|
int result = check_timespec(abs_timeout_or_null, true);
|
|
if (result != 0) {
|
|
return result;
|
|
}
|
|
|
|
unsigned int old_state = atomic_load_explicit(&cond->state, memory_order_relaxed);
|
|
pthread_mutex_unlock(mutex);
|
|
int status = __futex_wait_ex(&cond->state, cond->process_shared(), old_state,
|
|
use_realtime_clock, abs_timeout_or_null);
|
|
pthread_mutex_lock(mutex);
|
|
|
|
if (status == -ETIMEDOUT) {
|
|
return ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int pthread_cond_broadcast(pthread_cond_t* cond_interface) {
|
|
return __pthread_cond_pulse(__get_internal_cond(cond_interface), INT_MAX);
|
|
}
|
|
|
|
int pthread_cond_signal(pthread_cond_t* cond_interface) {
|
|
return __pthread_cond_pulse(__get_internal_cond(cond_interface), 1);
|
|
}
|
|
|
|
int pthread_cond_wait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex) {
|
|
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
|
|
return __pthread_cond_timedwait(cond, mutex, false, nullptr);
|
|
}
|
|
|
|
int pthread_cond_timedwait(pthread_cond_t *cond_interface, pthread_mutex_t * mutex,
|
|
const timespec *abstime) {
|
|
|
|
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
|
|
return __pthread_cond_timedwait(cond, mutex, cond->use_realtime_clock(), abstime);
|
|
}
|
|
|
|
extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interface,
|
|
pthread_mutex_t* mutex,
|
|
const timespec* abs_timeout) {
|
|
return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
|
|
}
|
|
|
|
#if !defined(__LP64__)
|
|
// TODO: this exists only for backward binary compatibility on 32 bit platforms.
|
|
extern "C" int pthread_cond_timedwait_monotonic(pthread_cond_t* cond_interface,
|
|
pthread_mutex_t* mutex,
|
|
const timespec* abs_timeout) {
|
|
return pthread_cond_timedwait_monotonic_np(cond_interface, mutex, abs_timeout);
|
|
}
|
|
|
|
// Force this function using CLOCK_MONOTONIC because it was always using
|
|
// CLOCK_MONOTONIC in history.
|
|
extern "C" int pthread_cond_timedwait_relative_np(pthread_cond_t* cond_interface,
|
|
pthread_mutex_t* mutex,
|
|
const timespec* rel_timeout) {
|
|
timespec ts;
|
|
timespec* abs_timeout = nullptr;
|
|
if (rel_timeout != nullptr) {
|
|
absolute_timespec_from_timespec(ts, *rel_timeout, CLOCK_MONOTONIC);
|
|
abs_timeout = &ts;
|
|
}
|
|
return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
|
|
}
|
|
|
|
extern "C" int pthread_cond_timeout_np(pthread_cond_t* cond_interface,
|
|
pthread_mutex_t* mutex, unsigned ms) {
|
|
timespec ts;
|
|
timespec_from_ms(ts, ms);
|
|
return pthread_cond_timedwait_relative_np(cond_interface, mutex, &ts);
|
|
}
|
|
#endif // !defined(__LP64__)
|