2926f9a31e
* bcopy is deprecated on LP64 by the following commit:
ce9ce28e5d
Change-Id: I6849916f0ec4a2d0db9a360999ad1dc8edda952b
329 lines
8.3 KiB
ArmAsm
329 lines
8.3 KiB
ArmAsm
/* Copyright (c) 2014, Linaro Limited
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the Linaro nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Assumptions:
|
|
*
|
|
* ARMv8-a, AArch64
|
|
* Unaligned accesses
|
|
* wchar_t is 4 bytes
|
|
*/
|
|
|
|
#include <private/bionic_asm.h>
|
|
|
|
/* Parameters and result. */
|
|
#define dstin x0
|
|
#define src x1
|
|
#define count x2
|
|
#define tmp1 x3
|
|
#define tmp1w w3
|
|
#define tmp2 x4
|
|
#define tmp2w w4
|
|
#define tmp3 x5
|
|
#define tmp3w w5
|
|
#define dst x6
|
|
|
|
#define A_l x7
|
|
#define A_h x8
|
|
#define B_l x9
|
|
#define B_h x10
|
|
#define C_l x11
|
|
#define C_h x12
|
|
#define D_l x13
|
|
#define D_h x14
|
|
|
|
#if defined(WMEMMOVE)
|
|
ENTRY(wmemmove)
|
|
lsl count, count, #2
|
|
#else
|
|
ENTRY(memmove)
|
|
#endif
|
|
cmp dstin, src
|
|
b.lo .Ldownwards
|
|
add tmp1, src, count
|
|
cmp dstin, tmp1
|
|
b.hs memcpy /* No overlap. */
|
|
|
|
/* Upwards move with potential overlap.
|
|
* Need to move from the tail backwards. SRC and DST point one
|
|
* byte beyond the remaining data to move. */
|
|
add dst, dstin, count
|
|
add src, src, count
|
|
cmp count, #64
|
|
b.ge .Lmov_not_short_up
|
|
|
|
/* Deal with small moves quickly by dropping straight into the
|
|
* exit block. */
|
|
.Ltail63up:
|
|
/* Move up to 48 bytes of data. At this point we only need the
|
|
* bottom 6 bits of count to be accurate. */
|
|
ands tmp1, count, #0x30
|
|
b.eq .Ltail15up
|
|
sub dst, dst, tmp1
|
|
sub src, src, tmp1
|
|
cmp tmp1w, #0x20
|
|
b.eq 1f
|
|
b.lt 2f
|
|
ldp A_l, A_h, [src, #32]
|
|
stp A_l, A_h, [dst, #32]
|
|
1:
|
|
ldp A_l, A_h, [src, #16]
|
|
stp A_l, A_h, [dst, #16]
|
|
2:
|
|
ldp A_l, A_h, [src]
|
|
stp A_l, A_h, [dst]
|
|
.Ltail15up:
|
|
/* Move up to 15 bytes of data. Does not assume additional data
|
|
* being moved. */
|
|
tbz count, #3, 1f
|
|
ldr tmp1, [src, #-8]!
|
|
str tmp1, [dst, #-8]!
|
|
1:
|
|
tbz count, #2, 1f
|
|
ldr tmp1w, [src, #-4]!
|
|
str tmp1w, [dst, #-4]!
|
|
1:
|
|
tbz count, #1, 1f
|
|
ldrh tmp1w, [src, #-2]!
|
|
strh tmp1w, [dst, #-2]!
|
|
1:
|
|
tbz count, #0, 1f
|
|
ldrb tmp1w, [src, #-1]
|
|
strb tmp1w, [dst, #-1]
|
|
1:
|
|
ret
|
|
|
|
.Lmov_not_short_up:
|
|
/* We don't much care about the alignment of DST, but we want SRC
|
|
* to be 128-bit (16 byte) aligned so that we don't cross cache line
|
|
* boundaries on both loads and stores. */
|
|
ands tmp2, src, #15 /* Bytes to reach alignment. */
|
|
b.eq 2f
|
|
sub count, count, tmp2
|
|
/* Move enough data to reach alignment; unlike memcpy, we have to
|
|
* be aware of the overlap, which means we can't move data twice. */
|
|
tbz tmp2, #3, 1f
|
|
ldr tmp1, [src, #-8]!
|
|
str tmp1, [dst, #-8]!
|
|
1:
|
|
tbz tmp2, #2, 1f
|
|
ldr tmp1w, [src, #-4]!
|
|
str tmp1w, [dst, #-4]!
|
|
1:
|
|
tbz tmp2, #1, 1f
|
|
ldrh tmp1w, [src, #-2]!
|
|
strh tmp1w, [dst, #-2]!
|
|
1:
|
|
tbz tmp2, #0, 1f
|
|
ldrb tmp1w, [src, #-1]!
|
|
strb tmp1w, [dst, #-1]!
|
|
1:
|
|
|
|
/* There may be less than 63 bytes to go now. */
|
|
cmp count, #63
|
|
b.le .Ltail63up
|
|
2:
|
|
subs count, count, #128
|
|
b.ge .Lmov_body_large_up
|
|
/* Less than 128 bytes to move, so handle 64 here and then jump
|
|
* to the tail. */
|
|
ldp A_l, A_h, [src, #-64]!
|
|
ldp B_l, B_h, [src, #16]
|
|
ldp C_l, C_h, [src, #32]
|
|
ldp D_l, D_h, [src, #48]
|
|
stp A_l, A_h, [dst, #-64]!
|
|
stp B_l, B_h, [dst, #16]
|
|
stp C_l, C_h, [dst, #32]
|
|
stp D_l, D_h, [dst, #48]
|
|
tst count, #0x3f
|
|
b.ne .Ltail63up
|
|
ret
|
|
|
|
/* Critical loop. Start at a new Icache line boundary. Assuming
|
|
* 64 bytes per line this ensures the entire loop is in one line. */
|
|
.p2align 6
|
|
.Lmov_body_large_up:
|
|
/* There are at least 128 bytes to move. */
|
|
ldp A_l, A_h, [src, #-16]
|
|
ldp B_l, B_h, [src, #-32]
|
|
ldp C_l, C_h, [src, #-48]
|
|
ldp D_l, D_h, [src, #-64]!
|
|
1:
|
|
stp A_l, A_h, [dst, #-16]
|
|
ldp A_l, A_h, [src, #-16]
|
|
stp B_l, B_h, [dst, #-32]
|
|
ldp B_l, B_h, [src, #-32]
|
|
stp C_l, C_h, [dst, #-48]
|
|
ldp C_l, C_h, [src, #-48]
|
|
stp D_l, D_h, [dst, #-64]!
|
|
ldp D_l, D_h, [src, #-64]!
|
|
subs count, count, #64
|
|
b.ge 1b
|
|
stp A_l, A_h, [dst, #-16]
|
|
stp B_l, B_h, [dst, #-32]
|
|
stp C_l, C_h, [dst, #-48]
|
|
stp D_l, D_h, [dst, #-64]!
|
|
tst count, #0x3f
|
|
b.ne .Ltail63up
|
|
ret
|
|
|
|
|
|
.Ldownwards:
|
|
/* For a downwards move we can safely use memcpy provided that
|
|
* DST is more than 16 bytes away from SRC. */
|
|
sub tmp1, src, #16
|
|
cmp dstin, tmp1
|
|
b.ls memcpy /* May overlap, but not critically. */
|
|
|
|
mov dst, dstin /* Preserve DSTIN for return value. */
|
|
cmp count, #64
|
|
b.ge .Lmov_not_short_down
|
|
|
|
/* Deal with small moves quickly by dropping straight into the
|
|
* exit block. */
|
|
.Ltail63down:
|
|
/* Move up to 48 bytes of data. At this point we only need the
|
|
* bottom 6 bits of count to be accurate. */
|
|
ands tmp1, count, #0x30
|
|
b.eq .Ltail15down
|
|
add dst, dst, tmp1
|
|
add src, src, tmp1
|
|
cmp tmp1w, #0x20
|
|
b.eq 1f
|
|
b.lt 2f
|
|
ldp A_l, A_h, [src, #-48]
|
|
stp A_l, A_h, [dst, #-48]
|
|
1:
|
|
ldp A_l, A_h, [src, #-32]
|
|
stp A_l, A_h, [dst, #-32]
|
|
2:
|
|
ldp A_l, A_h, [src, #-16]
|
|
stp A_l, A_h, [dst, #-16]
|
|
.Ltail15down:
|
|
/* Move up to 15 bytes of data. Does not assume additional data
|
|
being moved. */
|
|
tbz count, #3, 1f
|
|
ldr tmp1, [src], #8
|
|
str tmp1, [dst], #8
|
|
1:
|
|
tbz count, #2, 1f
|
|
ldr tmp1w, [src], #4
|
|
str tmp1w, [dst], #4
|
|
1:
|
|
tbz count, #1, 1f
|
|
ldrh tmp1w, [src], #2
|
|
strh tmp1w, [dst], #2
|
|
1:
|
|
tbz count, #0, 1f
|
|
ldrb tmp1w, [src]
|
|
strb tmp1w, [dst]
|
|
1:
|
|
ret
|
|
|
|
.Lmov_not_short_down:
|
|
/* We don't much care about the alignment of DST, but we want SRC
|
|
* to be 128-bit (16 byte) aligned so that we don't cross cache line
|
|
* boundaries on both loads and stores. */
|
|
neg tmp2, src
|
|
ands tmp2, tmp2, #15 /* Bytes to reach alignment. */
|
|
b.eq 2f
|
|
sub count, count, tmp2
|
|
/* Move enough data to reach alignment; unlike memcpy, we have to
|
|
* be aware of the overlap, which means we can't move data twice. */
|
|
tbz tmp2, #3, 1f
|
|
ldr tmp1, [src], #8
|
|
str tmp1, [dst], #8
|
|
1:
|
|
tbz tmp2, #2, 1f
|
|
ldr tmp1w, [src], #4
|
|
str tmp1w, [dst], #4
|
|
1:
|
|
tbz tmp2, #1, 1f
|
|
ldrh tmp1w, [src], #2
|
|
strh tmp1w, [dst], #2
|
|
1:
|
|
tbz tmp2, #0, 1f
|
|
ldrb tmp1w, [src], #1
|
|
strb tmp1w, [dst], #1
|
|
1:
|
|
|
|
/* There may be less than 63 bytes to go now. */
|
|
cmp count, #63
|
|
b.le .Ltail63down
|
|
2:
|
|
subs count, count, #128
|
|
b.ge .Lmov_body_large_down
|
|
/* Less than 128 bytes to move, so handle 64 here and then jump
|
|
* to the tail. */
|
|
ldp A_l, A_h, [src]
|
|
ldp B_l, B_h, [src, #16]
|
|
ldp C_l, C_h, [src, #32]
|
|
ldp D_l, D_h, [src, #48]
|
|
stp A_l, A_h, [dst]
|
|
stp B_l, B_h, [dst, #16]
|
|
stp C_l, C_h, [dst, #32]
|
|
stp D_l, D_h, [dst, #48]
|
|
tst count, #0x3f
|
|
add src, src, #64
|
|
add dst, dst, #64
|
|
b.ne .Ltail63down
|
|
ret
|
|
|
|
/* Critical loop. Start at a new cache line boundary. Assuming
|
|
* 64 bytes per line this ensures the entire loop is in one line. */
|
|
.p2align 6
|
|
.Lmov_body_large_down:
|
|
/* There are at least 128 bytes to move. */
|
|
ldp A_l, A_h, [src, #0]
|
|
sub dst, dst, #16 /* Pre-bias. */
|
|
ldp B_l, B_h, [src, #16]
|
|
ldp C_l, C_h, [src, #32]
|
|
ldp D_l, D_h, [src, #48]! /* src += 64 - Pre-bias. */
|
|
1:
|
|
stp A_l, A_h, [dst, #16]
|
|
ldp A_l, A_h, [src, #16]
|
|
stp B_l, B_h, [dst, #32]
|
|
ldp B_l, B_h, [src, #32]
|
|
stp C_l, C_h, [dst, #48]
|
|
ldp C_l, C_h, [src, #48]
|
|
stp D_l, D_h, [dst, #64]!
|
|
ldp D_l, D_h, [src, #64]!
|
|
subs count, count, #64
|
|
b.ge 1b
|
|
stp A_l, A_h, [dst, #16]
|
|
stp B_l, B_h, [dst, #32]
|
|
stp C_l, C_h, [dst, #48]
|
|
stp D_l, D_h, [dst, #64]
|
|
add src, src, #16
|
|
add dst, dst, #64 + 16
|
|
tst count, #0x3f
|
|
b.ne .Ltail63down
|
|
ret
|
|
#if defined(WMEMMOVE)
|
|
END(wmemmove)
|
|
#else
|
|
END(memmove)
|
|
#endif
|