platform_bionic/libc/bionic/malloc_heapprofd.cpp
Ryan Savitski 175c8867b0 allow for heapprofd's signal to be multiplexed
This patch refactors heapprofd_malloc to make it easier to reuse the
reserved signal for multiple purposes. We define a new generic signal
handler for profilers, which dispatches to more specific logic based on
the signal's payload (si_value).

The profiler signal handler is installed during libc preinit, after
malloc initialization (so races against synchronous heapprofd
initialization need not be considered). In terms of code organization, I
copied the existing approach with a loosely referenced function in
bionic_globals.h. Do tell if you'd rather a different approach here.

The profileability of a process is quite tied to the malloc
files/interfaces in bionic - in particular, it's set through
android_mallopt. I do not change that, but instead introduce a new
android_mallopt option to be able to query profileability of the
process (which is now used by the new profiler signal handler). As part
of that, gZygoteChildProfileable is moved from heapprofd_malloc to
common (alongside gZygoteChild).

I've removed the masking and reraising of the heapprofd signal when
racing against malloc_limit init. We're ok with taking a simpler
approach and dropping the heapprofd signal in such an unlikely race.

Note: this requires a corresponding change in heapprofd to use sigqueue()
instead of kill(), as the latter leaves the si_value uninitialized(?) on
the receiving side.

Bug: 144281346
Change-Id: I93bb2e82cff5870e5ca499cf86439860aca9dfa5
2020-01-15 22:55:03 +00:00

335 lines
12 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_STATIC)
#error This file should not be compiled for static targets.
#endif
#include <dlfcn.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <platform/bionic/malloc.h>
#include <private/bionic_config.h>
#include <private/bionic_malloc_dispatch.h>
#include <sys/system_properties.h>
#include "malloc_common.h"
#include "malloc_common_dynamic.h"
#include "malloc_heapprofd.h"
static constexpr char kHeapprofdSharedLib[] = "heapprofd_client.so";
static constexpr char kHeapprofdPrefix[] = "heapprofd";
static constexpr char kHeapprofdPropertyEnable[] = "heapprofd.enable";
// The logic for triggering heapprofd (at runtime) is as follows:
// 1. A reserved profiling signal is received by the process, its si_value
// discriminating between different handlers. For the case of heapprofd,
// HandleHeapprofdSignal is called.
// 2. If the initialization is not already in flight
// (gHeapprofdInitInProgress is false), the malloc hook is set to
// point at InitHeapprofdHook, and gHeapprofdInitInProgress is set to
// true.
// 3. The next malloc call enters InitHeapprofdHook, which removes the malloc
// hook, and spawns a detached pthread to run the InitHeapprofd task.
// (gHeapprofdInitHookInstalled atomic is used to perform this once.)
// 4. InitHeapprofd, on a dedicated pthread, loads the heapprofd client library,
// installs the full set of heapprofd hooks, and invokes the client's
// initializer. The dedicated pthread then terminates.
// 5. gHeapprofdInitInProgress and gHeapprofdInitHookInstalled are
// reset to false such that heapprofd can be reinitialized. Reinitialization
// means that a new profiling session is started, and any still active is
// torn down.
//
// The incremental hooking and a dedicated task thread are used since we cannot
// do heavy work within a signal handler, or when blocking a malloc invocation.
// The handle returned by dlopen when previously loading the heapprofd
// hooks. nullptr if shared library has not been already been loaded.
static _Atomic (void*) gHeapprofdHandle = nullptr;
static _Atomic bool gHeapprofdInitInProgress = false;
static _Atomic bool gHeapprofdInitHookInstalled = false;
// Set to true if the process has enabled malloc_debug or malloc_hooks, which
// are incompatible (and take precedence over) heapprofd.
static _Atomic bool gHeapprofdIncompatibleHooks = false;
extern "C" void* MallocInitHeapprofdHook(size_t);
static constexpr MallocDispatch __heapprofd_init_dispatch
__attribute__((unused)) = {
Malloc(calloc),
Malloc(free),
Malloc(mallinfo),
MallocInitHeapprofdHook, // malloc replacement
Malloc(malloc_usable_size),
Malloc(memalign),
Malloc(posix_memalign),
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
Malloc(pvalloc),
#endif
Malloc(realloc),
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
Malloc(valloc),
#endif
Malloc(malloc_iterate),
Malloc(malloc_disable),
Malloc(malloc_enable),
Malloc(mallopt),
Malloc(aligned_alloc),
Malloc(malloc_info),
};
constexpr char kHeapprofdProgramPropertyPrefix[] = "heapprofd.enable.";
constexpr size_t kHeapprofdProgramPropertyPrefixSize = sizeof(kHeapprofdProgramPropertyPrefix) - 1;
constexpr size_t kMaxCmdlineSize = 512;
static bool GetHeapprofdProgramProperty(char* data, size_t size) {
if (size < kHeapprofdProgramPropertyPrefixSize) {
error_log("%s: Overflow constructing heapprofd property", getprogname());
return false;
}
memcpy(data, kHeapprofdProgramPropertyPrefix, kHeapprofdProgramPropertyPrefixSize);
int fd = open("/proc/self/cmdline", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
error_log("%s: Failed to open /proc/self/cmdline", getprogname());
return false;
}
char cmdline[kMaxCmdlineSize];
ssize_t rd = read(fd, cmdline, sizeof(cmdline) - 1);
close(fd);
if (rd == -1) {
error_log("%s: Failed to read /proc/self/cmdline", getprogname());
return false;
}
cmdline[rd] = '\0';
char* first_arg = static_cast<char*>(memchr(cmdline, '\0', rd));
if (first_arg == nullptr) {
error_log("%s: Overflow reading cmdline", getprogname());
return false;
}
// For consistency with what we do with Java app cmdlines, trim everything
// after the @ sign of the first arg.
char* first_at = static_cast<char*>(memchr(cmdline, '@', rd));
if (first_at != nullptr && first_at < first_arg) {
*first_at = '\0';
first_arg = first_at;
}
char* start = static_cast<char*>(memrchr(cmdline, '/', first_arg - cmdline));
if (start == first_arg) {
// The first argument ended in a slash.
error_log("%s: cmdline ends in /", getprogname());
return false;
} else if (start == nullptr) {
start = cmdline;
} else {
// Skip the /.
start++;
}
size_t name_size = static_cast<size_t>(first_arg - start);
if (name_size >= size - kHeapprofdProgramPropertyPrefixSize) {
error_log("%s: overflow constructing heapprofd property.", getprogname());
return false;
}
// + 1 to also copy the trailing null byte.
memcpy(data + kHeapprofdProgramPropertyPrefixSize, start, name_size + 1);
return true;
}
// Runtime triggering entry-point. Two possible call sites:
// * when receiving a profiling signal with a si_value indicating heapprofd.
// * when a Zygote child is marking itself as profileable, and there's a
// matching profiling request for this process (in which case heapprofd client
// is loaded synchronously).
// In both cases, the caller is responsible for verifying that the process is
// considered profileable.
void HandleHeapprofdSignal() {
if (atomic_load_explicit(&gHeapprofdIncompatibleHooks, memory_order_acquire)) {
error_log("%s: not enabling heapprofd, malloc_debug/malloc_hooks are enabled.", getprogname());
return;
}
// Checking this variable is only necessary when this could conflict with
// the change to enable the allocation limit. All other places will
// not ever have a conflict modifying the globals.
if (!atomic_exchange(&gGlobalsMutating, true)) {
if (!atomic_exchange(&gHeapprofdInitInProgress, true)) {
__libc_globals.mutate([](libc_globals* globals) {
atomic_store(&globals->default_dispatch_table, &__heapprofd_init_dispatch);
auto dispatch_table = GetDispatchTable();
if (dispatch_table == nullptr || dispatch_table == &globals->malloc_dispatch_table) {
atomic_store(&globals->current_dispatch_table, &__heapprofd_init_dispatch);
}
});
}
atomic_store(&gGlobalsMutating, false);
}
// Otherwise, we're racing against malloc_limit's enable logic (at most once
// per process, and a niche feature). This is highly unlikely, so simply give
// up if it does happen.
}
bool HeapprofdShouldLoad() {
// First check for heapprofd.enable. If it is set to "all", enable
// heapprofd for all processes. Otherwise, check heapprofd.enable.${prog},
// if it is set and not 0, enable heap profiling for this process.
char property_value[PROP_VALUE_MAX];
if (__system_property_get(kHeapprofdPropertyEnable, property_value) == 0) {
return false;
}
if (strcmp(property_value, "all") == 0) {
return true;
}
char program_property[kHeapprofdProgramPropertyPrefixSize + kMaxCmdlineSize];
if (!GetHeapprofdProgramProperty(program_property,
sizeof(program_property))) {
return false;
}
if (__system_property_get(program_property, property_value) == 0) {
return false;
}
return property_value[0] != '\0';
}
void HeapprofdRememberHookConflict() {
atomic_store_explicit(&gHeapprofdIncompatibleHooks, true, memory_order_release);
}
static void CommonInstallHooks(libc_globals* globals) {
void* impl_handle = atomic_load(&gHeapprofdHandle);
bool reusing_handle = impl_handle != nullptr;
if (!reusing_handle) {
impl_handle = LoadSharedLibrary(kHeapprofdSharedLib, kHeapprofdPrefix, &globals->malloc_dispatch_table);
if (impl_handle == nullptr) {
return;
}
} else if (!InitSharedLibrary(impl_handle, kHeapprofdSharedLib, kHeapprofdPrefix, &globals->malloc_dispatch_table)) {
return;
}
if (FinishInstallHooks(globals, nullptr, kHeapprofdPrefix)) {
atomic_store(&gHeapprofdHandle, impl_handle);
} else if (!reusing_handle) {
dlclose(impl_handle);
}
atomic_store(&gHeapprofdInitInProgress, false);
}
void HeapprofdInstallHooksAtInit(libc_globals* globals) {
if (atomic_exchange(&gHeapprofdInitInProgress, true)) {
return;
}
CommonInstallHooks(globals);
}
static void* InitHeapprofd(void*) {
pthread_mutex_lock(&gGlobalsMutateLock);
__libc_globals.mutate([](libc_globals* globals) {
CommonInstallHooks(globals);
});
pthread_mutex_unlock(&gGlobalsMutateLock);
// Allow to install hook again to re-initialize heap profiling after the
// current session finished.
atomic_store(&gHeapprofdInitHookInstalled, false);
return nullptr;
}
extern "C" void* MallocInitHeapprofdHook(size_t bytes) {
if (!atomic_exchange(&gHeapprofdInitHookInstalled, true)) {
pthread_mutex_lock(&gGlobalsMutateLock);
__libc_globals.mutate([](libc_globals* globals) {
auto old_dispatch = GetDefaultDispatchTable();
atomic_store(&globals->default_dispatch_table, nullptr);
if (GetDispatchTable() == old_dispatch) {
atomic_store(&globals->current_dispatch_table, nullptr);
}
});
pthread_mutex_unlock(&gGlobalsMutateLock);
pthread_t thread_id;
if (pthread_create(&thread_id, nullptr, InitHeapprofd, nullptr) != 0) {
error_log("%s: heapprofd: failed to pthread_create.", getprogname());
} else if (pthread_detach(thread_id) != 0) {
error_log("%s: heapprofd: failed to pthread_detach", getprogname());
}
if (pthread_setname_np(thread_id, "heapprofdinit") != 0) {
error_log("%s: heapprod: failed to pthread_setname_np", getprogname());
}
}
return Malloc(malloc)(bytes);
}
bool HeapprofdInitZygoteChildProfiling() {
// Conditionally start "from startup" profiling.
if (HeapprofdShouldLoad()) {
// Directly call the signal handler codepath (properly protects against
// concurrent invocations).
HandleHeapprofdSignal();
}
return true;
}
static bool DispatchReset() {
if (!atomic_exchange(&gHeapprofdInitInProgress, true)) {
pthread_mutex_lock(&gGlobalsMutateLock);
__libc_globals.mutate([](libc_globals* globals) {
auto old_dispatch = GetDefaultDispatchTable();
atomic_store(&globals->default_dispatch_table, nullptr);
if (GetDispatchTable() == old_dispatch) {
atomic_store(&globals->current_dispatch_table, nullptr);
}
});
pthread_mutex_unlock(&gGlobalsMutateLock);
atomic_store(&gHeapprofdInitInProgress, false);
return true;
}
errno = EAGAIN;
return false;
}
bool HeapprofdMallopt(int opcode, void* arg, size_t arg_size) {
if (opcode == M_RESET_HOOKS) {
if (arg != nullptr || arg_size != 0) {
errno = EINVAL;
return false;
}
return DispatchReset();
}
errno = ENOTSUP;
return false;
}