platform_bionic/libc/bionic/pthread_cond.cpp
Tom Cherry 69010802d0 Implement new clock wait functions
pthread_cond_clockwait
pthread_mutex_clocklock
pthread_rwlock_clockrdlock
pthread_rwlock_clockwrlock
sem_clockwait

Bug: 35756266
Test: new unit tests
Change-Id: I71bd25eeec6476134b368d5bdf2f729d0bba595e
2019-07-15 09:06:19 -07:00

258 lines
9.7 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <pthread.h>
#include <errno.h>
#include <limits.h>
#include <stdatomic.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
#include "pthread_internal.h"
#include "private/bionic_futex.h"
#include "private/bionic_time_conversions.h"
#include "private/bionic_tls.h"
// XXX *technically* there is a race condition that could allow
// XXX a signal to be missed. If thread A is preempted in _wait()
// XXX after unlocking the mutex and before waiting, and if other
// XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
// XXX before thread A is scheduled again and calls futex_wait(),
// XXX then the signal will be lost.
// We use one bit in pthread_condattr_t (long) values as the 'shared' flag
// and one bit for the clock type (CLOCK_REALTIME is 0 and
// CLOCK_MONOTONIC is 1). The rest of the bits are a counter.
//
// The 'value' field in pthread_cond_t has the same layout.
#define COND_SHARED_MASK 0x0001
#define COND_CLOCK_MASK 0x0002
#define COND_COUNTER_STEP 0x0004
#define COND_FLAGS_MASK (COND_SHARED_MASK | COND_CLOCK_MASK)
#define COND_COUNTER_MASK (~COND_FLAGS_MASK)
#define COND_IS_SHARED(c) (((c) & COND_SHARED_MASK) != 0)
#define COND_GET_CLOCK(c) (((c) & COND_CLOCK_MASK) >> 1)
#define COND_SET_CLOCK(attr, c) ((attr) | (c << 1))
int pthread_condattr_init(pthread_condattr_t* attr) {
*attr = 0;
*attr |= PTHREAD_PROCESS_PRIVATE;
*attr |= (CLOCK_REALTIME << 1);
return 0;
}
int pthread_condattr_getpshared(const pthread_condattr_t* attr, int* pshared) {
*pshared = static_cast<int>(COND_IS_SHARED(*attr));
return 0;
}
int pthread_condattr_setpshared(pthread_condattr_t* attr, int pshared) {
if (pshared != PTHREAD_PROCESS_SHARED && pshared != PTHREAD_PROCESS_PRIVATE) {
return EINVAL;
}
*attr |= pshared;
return 0;
}
int pthread_condattr_getclock(const pthread_condattr_t* attr, clockid_t* clock) {
*clock = COND_GET_CLOCK(*attr);
return 0;
}
int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock) {
if (clock != CLOCK_MONOTONIC && clock != CLOCK_REALTIME) {
return EINVAL;
}
*attr = COND_SET_CLOCK(*attr, clock);
return 0;
}
int pthread_condattr_destroy(pthread_condattr_t* attr) {
*attr = 0xdeada11d;
return 0;
}
struct pthread_cond_internal_t {
atomic_uint state;
bool process_shared() {
return COND_IS_SHARED(atomic_load_explicit(&state, memory_order_relaxed));
}
bool use_realtime_clock() {
return COND_GET_CLOCK(atomic_load_explicit(&state, memory_order_relaxed)) == CLOCK_REALTIME;
}
#if defined(__LP64__)
char __reserved[44];
#endif
};
static_assert(sizeof(pthread_cond_t) == sizeof(pthread_cond_internal_t),
"pthread_cond_t should actually be pthread_cond_internal_t in implementation.");
// For binary compatibility with old version of pthread_cond_t, we can't use more strict alignment
// than 4-byte alignment.
static_assert(alignof(pthread_cond_t) == 4,
"pthread_cond_t should fulfill the alignment requirement of pthread_cond_internal_t.");
static pthread_cond_internal_t* __get_internal_cond(pthread_cond_t* cond_interface) {
return reinterpret_cast<pthread_cond_internal_t*>(cond_interface);
}
int pthread_cond_init(pthread_cond_t* cond_interface, const pthread_condattr_t* attr) {
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
unsigned int init_state = 0;
if (attr != nullptr) {
init_state = (*attr & COND_FLAGS_MASK);
}
atomic_init(&cond->state, init_state);
return 0;
}
int pthread_cond_destroy(pthread_cond_t* cond_interface) {
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
atomic_store_explicit(&cond->state, 0xdeadc04d, memory_order_relaxed);
return 0;
}
// This function is used by pthread_cond_broadcast and
// pthread_cond_signal to atomically decrement the counter
// then wake up thread_count threads.
static int __pthread_cond_pulse(pthread_cond_internal_t* cond, int thread_count) {
// We don't use a release/seq_cst fence here. Because pthread_cond_wait/signal can't be
// used as a method for memory synchronization by itself. It should always be used with
// pthread mutexes. Note that Spurious wakeups from pthread_cond_wait/timedwait may occur,
// so when using condition variables there is always a boolean predicate involving shared
// variables associated with each condition wait that is true if the thread should proceed.
// If the predicate is seen true before a condition wait, pthread_cond_wait/timedwait will
// not be called. That's why pthread_wait/signal pair can't be used as a method for memory
// synchronization. And it doesn't help even if we use any fence here.
// The increase of value should leave flags alone, even if the value can overflows.
atomic_fetch_add_explicit(&cond->state, COND_COUNTER_STEP, memory_order_relaxed);
__futex_wake_ex(&cond->state, cond->process_shared(), thread_count);
return 0;
}
static int __pthread_cond_timedwait(pthread_cond_internal_t* cond, pthread_mutex_t* mutex,
bool use_realtime_clock, const timespec* abs_timeout_or_null) {
int result = check_timespec(abs_timeout_or_null, true);
if (result != 0) {
return result;
}
unsigned int old_state = atomic_load_explicit(&cond->state, memory_order_relaxed);
pthread_mutex_unlock(mutex);
int status = __futex_wait_ex(&cond->state, cond->process_shared(), old_state,
use_realtime_clock, abs_timeout_or_null);
pthread_mutex_lock(mutex);
if (status == -ETIMEDOUT) {
return ETIMEDOUT;
}
return 0;
}
int pthread_cond_broadcast(pthread_cond_t* cond_interface) {
return __pthread_cond_pulse(__get_internal_cond(cond_interface), INT_MAX);
}
int pthread_cond_signal(pthread_cond_t* cond_interface) {
return __pthread_cond_pulse(__get_internal_cond(cond_interface), 1);
}
int pthread_cond_wait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex) {
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
return __pthread_cond_timedwait(cond, mutex, false, nullptr);
}
int pthread_cond_timedwait(pthread_cond_t *cond_interface, pthread_mutex_t * mutex,
const timespec *abstime) {
pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
return __pthread_cond_timedwait(cond, mutex, cond->use_realtime_clock(), abstime);
}
extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interface,
pthread_mutex_t* mutex,
const timespec* abs_timeout) {
return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
}
int pthread_cond_clockwait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex, clockid_t clock,
const struct timespec* abs_timeout) {
switch (clock) {
case CLOCK_MONOTONIC:
return pthread_cond_timedwait_monotonic_np(cond_interface, mutex, abs_timeout);
case CLOCK_REALTIME:
return pthread_cond_timedwait(cond_interface, mutex, abs_timeout);
default:
return EINVAL;
}
}
#if !defined(__LP64__)
// TODO: this exists only for backward binary compatibility on 32 bit platforms.
extern "C" int pthread_cond_timedwait_monotonic(pthread_cond_t* cond_interface,
pthread_mutex_t* mutex,
const timespec* abs_timeout) {
return pthread_cond_timedwait_monotonic_np(cond_interface, mutex, abs_timeout);
}
// Force this function using CLOCK_MONOTONIC because it was always using
// CLOCK_MONOTONIC in history.
extern "C" int pthread_cond_timedwait_relative_np(pthread_cond_t* cond_interface,
pthread_mutex_t* mutex,
const timespec* rel_timeout) {
timespec ts;
timespec* abs_timeout = nullptr;
if (rel_timeout != nullptr) {
absolute_timespec_from_timespec(ts, *rel_timeout, CLOCK_MONOTONIC);
abs_timeout = &ts;
}
return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
}
extern "C" int pthread_cond_timeout_np(pthread_cond_t* cond_interface,
pthread_mutex_t* mutex, unsigned ms) {
timespec ts;
timespec_from_ms(ts, ms);
return pthread_cond_timedwait_relative_np(cond_interface, mutex, &ts);
}
#endif // !defined(__LP64__)