19e246dda6
If pthread_detach() is called while the thread is in pthread_exit(), it takes the risk that no one can free the pthread_internal_t. So I add PTHREAD_ATTR_FLAG_ZOMBIE to detect this, maybe very rare, but both glibc and netbsd libpthread have similar function. Change-Id: Iaa15f651903b8ca07aaa7bd4de46ff14a2f93835
1094 lines
34 KiB
C++
1094 lines
34 KiB
C++
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "private/ScopeGuard.h"
|
|
#include "BionicDeathTest.h"
|
|
#include "ScopedSignalHandler.h"
|
|
#include "gtest_ex.h"
|
|
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <malloc.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/syscall.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
TEST(pthread, pthread_key_create) {
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
// Can't delete a key that's already been deleted.
|
|
ASSERT_EQ(EINVAL, pthread_key_delete(key));
|
|
}
|
|
|
|
TEST(pthread, pthread_keys_max) {
|
|
// POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
|
|
ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
|
|
}
|
|
|
|
TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
|
|
int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
|
|
ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
|
|
}
|
|
|
|
TEST(pthread, pthread_key_many_distinct) {
|
|
// As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
|
|
// pthread keys, but We should be able to allocate at least this many keys.
|
|
int nkeys = PTHREAD_KEYS_MAX / 2;
|
|
std::vector<pthread_key_t> keys;
|
|
|
|
auto scope_guard = make_scope_guard([&keys]{
|
|
for (auto key : keys) {
|
|
EXPECT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
});
|
|
|
|
for (int i = 0; i < nkeys; ++i) {
|
|
pthread_key_t key;
|
|
// If this fails, it's likely that GLOBAL_INIT_THREAD_LOCAL_BUFFER_COUNT is
|
|
// wrong.
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
|
|
keys.push_back(key);
|
|
ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
|
|
}
|
|
|
|
for (int i = keys.size() - 1; i >= 0; --i) {
|
|
ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
|
|
pthread_key_t key = keys.back();
|
|
keys.pop_back();
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
|
|
std::vector<pthread_key_t> keys;
|
|
int rv = 0;
|
|
|
|
// Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
|
|
// be more than we are allowed to allocate now.
|
|
for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
|
|
pthread_key_t key;
|
|
rv = pthread_key_create(&key, NULL);
|
|
if (rv == EAGAIN) {
|
|
break;
|
|
}
|
|
EXPECT_EQ(0, rv);
|
|
keys.push_back(key);
|
|
}
|
|
|
|
// Don't leak keys.
|
|
for (auto key : keys) {
|
|
EXPECT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
keys.clear();
|
|
|
|
// We should have eventually reached the maximum number of keys and received
|
|
// EAGAIN.
|
|
ASSERT_EQ(EAGAIN, rv);
|
|
}
|
|
|
|
TEST(pthread, pthread_key_delete) {
|
|
void* expected = reinterpret_cast<void*>(1234);
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_setspecific(key, expected));
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
// After deletion, pthread_getspecific returns NULL.
|
|
ASSERT_EQ(NULL, pthread_getspecific(key));
|
|
// And you can't use pthread_setspecific with the deleted key.
|
|
ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
|
|
}
|
|
|
|
TEST(pthread, pthread_key_fork) {
|
|
void* expected = reinterpret_cast<void*>(1234);
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_setspecific(key, expected));
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
|
|
pid_t pid = fork();
|
|
ASSERT_NE(-1, pid) << strerror(errno);
|
|
|
|
if (pid == 0) {
|
|
// The surviving thread inherits all the forking thread's TLS values...
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
_exit(99);
|
|
}
|
|
|
|
int status;
|
|
ASSERT_EQ(pid, waitpid(pid, &status, 0));
|
|
ASSERT_TRUE(WIFEXITED(status));
|
|
ASSERT_EQ(99, WEXITSTATUS(status));
|
|
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
|
|
static void* DirtyKeyFn(void* key) {
|
|
return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
|
|
}
|
|
|
|
TEST(pthread, pthread_key_dirty) {
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
|
|
size_t stack_size = 128 * 1024;
|
|
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
ASSERT_NE(MAP_FAILED, stack);
|
|
memset(stack, 0xff, stack_size);
|
|
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_attr_init(&attr));
|
|
ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
|
|
|
|
void* result;
|
|
ASSERT_EQ(0, pthread_join(t, &result));
|
|
ASSERT_EQ(nullptr, result); // Not ~0!
|
|
|
|
ASSERT_EQ(0, munmap(stack, stack_size));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
|
|
static void* IdFn(void* arg) {
|
|
return arg;
|
|
}
|
|
|
|
class SpinFunctionHelper {
|
|
public:
|
|
SpinFunctionHelper() {
|
|
SpinFunctionHelper::spin_flag_ = true;
|
|
}
|
|
~SpinFunctionHelper() {
|
|
UnSpin();
|
|
}
|
|
auto GetFunction() -> void* (*)(void*) {
|
|
return SpinFunctionHelper::SpinFn;
|
|
}
|
|
|
|
void UnSpin() {
|
|
SpinFunctionHelper::spin_flag_ = false;
|
|
}
|
|
|
|
private:
|
|
static void* SpinFn(void*) {
|
|
while (spin_flag_) {}
|
|
return NULL;
|
|
}
|
|
static volatile bool spin_flag_;
|
|
};
|
|
|
|
// It doesn't matter if spin_flag_ is used in several tests,
|
|
// because it is always set to false after each test. Each thread
|
|
// loops on spin_flag_ can find it becomes false at some time.
|
|
volatile bool SpinFunctionHelper::spin_flag_ = false;
|
|
|
|
static void* JoinFn(void* arg) {
|
|
return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
|
|
}
|
|
|
|
static void AssertDetached(pthread_t t, bool is_detached) {
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_getattr_np(t, &attr));
|
|
int detach_state;
|
|
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
|
|
pthread_attr_destroy(&attr);
|
|
ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
|
|
}
|
|
|
|
static void MakeDeadThread(pthread_t& t) {
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
|
|
ASSERT_EQ(0, pthread_join(t, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_create) {
|
|
void* expected_result = reinterpret_cast<void*>(123);
|
|
// Can we create a thread?
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
|
|
// If we join, do we get the expected value back?
|
|
void* result;
|
|
ASSERT_EQ(0, pthread_join(t, &result));
|
|
ASSERT_EQ(expected_result, result);
|
|
}
|
|
|
|
TEST(pthread, pthread_create_EAGAIN) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_no_join_after_detach) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
// After a pthread_detach...
|
|
ASSERT_EQ(0, pthread_detach(t1));
|
|
AssertDetached(t1, true);
|
|
|
|
// ...pthread_join should fail.
|
|
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_no_op_detach_after_join) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
// If thread 2 is already waiting to join thread 1...
|
|
pthread_t t2;
|
|
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
|
|
|
|
sleep(1); // (Give t2 a chance to call pthread_join.)
|
|
|
|
// ...a call to pthread_detach on thread 1 will "succeed" (silently fail)...
|
|
ASSERT_EQ(0, pthread_detach(t1));
|
|
AssertDetached(t1, false);
|
|
|
|
spinhelper.UnSpin();
|
|
|
|
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(t2, &join_result));
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
}
|
|
|
|
TEST(pthread, pthread_join_self) {
|
|
ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
|
|
}
|
|
|
|
struct TestBug37410 {
|
|
pthread_t main_thread;
|
|
pthread_mutex_t mutex;
|
|
|
|
static void main() {
|
|
TestBug37410 data;
|
|
data.main_thread = pthread_self();
|
|
ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
|
|
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
|
|
|
|
// Wait for the thread to be running...
|
|
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
|
|
|
|
// ...and exit.
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
private:
|
|
static void* thread_fn(void* arg) {
|
|
TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
|
|
|
|
// Let the main thread know we're running.
|
|
pthread_mutex_unlock(&data->mutex);
|
|
|
|
// And wait for the main thread to exit.
|
|
pthread_join(data->main_thread, NULL);
|
|
|
|
return NULL;
|
|
}
|
|
};
|
|
|
|
// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
|
|
// run this test (which exits normally) in its own process.
|
|
|
|
class pthread_DeathTest : public BionicDeathTest {};
|
|
|
|
TEST_F(pthread_DeathTest, pthread_bug_37410) {
|
|
// http://code.google.com/p/android/issues/detail?id=37410
|
|
ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
|
|
}
|
|
|
|
static void* SignalHandlerFn(void* arg) {
|
|
sigset_t wait_set;
|
|
sigfillset(&wait_set);
|
|
return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
|
|
}
|
|
|
|
TEST(pthread, pthread_sigmask) {
|
|
// Check that SIGUSR1 isn't blocked.
|
|
sigset_t original_set;
|
|
sigemptyset(&original_set);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
|
|
ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
|
|
|
|
// Block SIGUSR1.
|
|
sigset_t set;
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIGUSR1);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
|
|
|
|
// Check that SIGUSR1 is blocked.
|
|
sigset_t final_set;
|
|
sigemptyset(&final_set);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
|
|
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
|
|
// ...and that sigprocmask agrees with pthread_sigmask.
|
|
sigemptyset(&final_set);
|
|
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
|
|
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
|
|
|
|
// Spawn a thread that calls sigwait and tells us what it received.
|
|
pthread_t signal_thread;
|
|
int received_signal = -1;
|
|
ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
|
|
|
|
// Send that thread SIGUSR1.
|
|
pthread_kill(signal_thread, SIGUSR1);
|
|
|
|
// See what it got.
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
|
|
ASSERT_EQ(SIGUSR1, received_signal);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
|
|
// Restore the original signal mask.
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__too_long) {
|
|
ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "this name is far too long for linux"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__self) {
|
|
ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__other) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
// Call pthread_setname_np after thread has already exited.
|
|
ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__0) {
|
|
// Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__invalid_signal) {
|
|
ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
|
|
}
|
|
|
|
static void pthread_kill__in_signal_handler_helper(int signal_number) {
|
|
static int count = 0;
|
|
ASSERT_EQ(SIGALRM, signal_number);
|
|
if (++count == 1) {
|
|
// Can we call pthread_kill from a signal handler?
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__in_signal_handler) {
|
|
ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
|
|
}
|
|
|
|
TEST(pthread, pthread_detach__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
|
|
}
|
|
|
|
TEST(pthread, pthread_detach_no_leak) {
|
|
size_t initial_bytes = 0;
|
|
// Run this loop more than once since the first loop causes some memory
|
|
// to be allocated permenantly. Run an extra loop to help catch any subtle
|
|
// memory leaks.
|
|
for (size_t loop = 0; loop < 3; loop++) {
|
|
// Set the initial bytes on the second loop since the memory in use
|
|
// should have stabilized.
|
|
if (loop == 1) {
|
|
initial_bytes = mallinfo().uordblks;
|
|
}
|
|
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_attr_init(&attr));
|
|
ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
|
|
|
|
std::vector<pthread_t> threads;
|
|
for (size_t i = 0; i < 32; ++i) {
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, NULL));
|
|
threads.push_back(t);
|
|
}
|
|
|
|
sleep(1);
|
|
|
|
for (size_t i = 0; i < 32; ++i) {
|
|
ASSERT_EQ(0, pthread_detach(threads[i])) << i;
|
|
}
|
|
}
|
|
|
|
size_t final_bytes = mallinfo().uordblks;
|
|
int leaked_bytes = (final_bytes - initial_bytes);
|
|
|
|
ASSERT_EQ(0, leaked_bytes);
|
|
}
|
|
|
|
TEST(pthread, pthread_getcpuclockid__clock_gettime) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
clockid_t c;
|
|
ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(c, &ts));
|
|
}
|
|
|
|
TEST(pthread, pthread_getcpuclockid__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
clockid_t c;
|
|
ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
|
|
}
|
|
|
|
TEST(pthread, pthread_getschedparam__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
int policy;
|
|
sched_param param;
|
|
ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m));
|
|
}
|
|
|
|
TEST(pthread, pthread_setschedparam__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
int policy = 0;
|
|
sched_param param;
|
|
ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__multijoin) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
pthread_t t2;
|
|
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
|
|
|
|
sleep(1); // (Give t2 a chance to call pthread_join.)
|
|
|
|
// Multiple joins to the same thread should fail.
|
|
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
|
|
|
|
spinhelper.UnSpin();
|
|
|
|
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(t2, &join_result));
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__race) {
|
|
// http://b/11693195 --- pthread_join could return before the thread had actually exited.
|
|
// If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
|
|
for (size_t i = 0; i < 1024; ++i) {
|
|
size_t stack_size = 64*1024;
|
|
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
|
|
|
|
pthread_attr_t a;
|
|
pthread_attr_init(&a);
|
|
pthread_attr_setstack(&a, stack, stack_size);
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
|
|
ASSERT_EQ(0, pthread_join(t, NULL));
|
|
ASSERT_EQ(0, munmap(stack, stack_size));
|
|
}
|
|
}
|
|
|
|
static void* GetActualGuardSizeFn(void* arg) {
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
|
|
return NULL;
|
|
}
|
|
|
|
static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
|
|
size_t result;
|
|
pthread_t t;
|
|
pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
|
|
pthread_join(t, NULL);
|
|
return result;
|
|
}
|
|
|
|
static void* GetActualStackSizeFn(void* arg) {
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
|
|
return NULL;
|
|
}
|
|
|
|
static size_t GetActualStackSize(const pthread_attr_t& attributes) {
|
|
size_t result;
|
|
pthread_t t;
|
|
pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
|
|
pthread_join(t, NULL);
|
|
return result;
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_setguardsize) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
|
|
// Get the default guard size.
|
|
size_t default_guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
|
|
|
|
// No such thing as too small: will be rounded up to one page by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
|
|
size_t guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(128U, guard_size);
|
|
ASSERT_EQ(4096U, GetActualGuardSize(attributes));
|
|
|
|
// Large enough and a multiple of the page size.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(32*1024U, guard_size);
|
|
|
|
// Large enough but not a multiple of the page size; will be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(32*1024U + 1, guard_size);
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_setstacksize) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
|
|
// Get the default stack size.
|
|
size_t default_stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
|
|
|
|
// Too small.
|
|
ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
|
|
size_t stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(default_stack_size, stack_size);
|
|
ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
|
|
|
|
// Large enough and a multiple of the page size; may be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(32*1024U, stack_size);
|
|
ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
|
|
|
|
// Large enough but not aligned; will be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(32*1024U + 1, stack_size);
|
|
#if defined(__BIONIC__)
|
|
ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
|
|
#else // __BIONIC__
|
|
// glibc rounds down, in violation of POSIX. They document this in their BUGS section.
|
|
ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
|
|
#endif // __BIONIC__
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_smoke) {
|
|
pthread_rwlock_t l;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
|
|
|
|
// Single read lock
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Multiple read lock
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Write lock
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try writer lock
|
|
ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try reader lock
|
|
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try writer lock after unlock
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
#ifdef __BIONIC__
|
|
// EDEADLK in "read after write"
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// EDEADLK in "write after write"
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
#endif
|
|
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&l));
|
|
}
|
|
|
|
static int g_once_fn_call_count = 0;
|
|
static void OnceFn() {
|
|
++g_once_fn_call_count;
|
|
}
|
|
|
|
TEST(pthread, pthread_once_smoke) {
|
|
pthread_once_t once_control = PTHREAD_ONCE_INIT;
|
|
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
|
|
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
|
|
ASSERT_EQ(1, g_once_fn_call_count);
|
|
}
|
|
|
|
static std::string pthread_once_1934122_result = "";
|
|
|
|
static void Routine2() {
|
|
pthread_once_1934122_result += "2";
|
|
}
|
|
|
|
static void Routine1() {
|
|
pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
|
|
pthread_once_1934122_result += "1";
|
|
pthread_once(&once_control_2, &Routine2);
|
|
}
|
|
|
|
TEST(pthread, pthread_once_1934122) {
|
|
// Very old versions of Android couldn't call pthread_once from a
|
|
// pthread_once init routine. http://b/1934122.
|
|
pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
|
|
ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
|
|
ASSERT_EQ("12", pthread_once_1934122_result);
|
|
}
|
|
|
|
static int g_atfork_prepare_calls = 0;
|
|
static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 1; }
|
|
static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls << 4) | 2; }
|
|
static int g_atfork_parent_calls = 0;
|
|
static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 1; }
|
|
static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls << 4) | 2; }
|
|
static int g_atfork_child_calls = 0;
|
|
static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 1; }
|
|
static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls << 4) | 2; }
|
|
|
|
TEST(pthread, pthread_atfork_smoke) {
|
|
test_isolated([] {
|
|
ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
|
|
ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
|
|
|
|
int pid = fork();
|
|
ASSERT_NE(-1, pid) << strerror(errno);
|
|
|
|
// Child and parent calls are made in the order they were registered.
|
|
if (pid == 0) {
|
|
ASSERT_EQ(0x12, g_atfork_child_calls);
|
|
_exit(0);
|
|
}
|
|
ASSERT_EQ(0x12, g_atfork_parent_calls);
|
|
|
|
// Prepare calls are made in the reverse order.
|
|
ASSERT_EQ(0x21, g_atfork_prepare_calls);
|
|
});
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_getscope) {
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_attr_init(&attr));
|
|
|
|
int scope;
|
|
ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
|
|
ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
|
|
}
|
|
|
|
TEST(pthread, pthread_condattr_init) {
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_REALTIME, clock);
|
|
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
|
|
}
|
|
|
|
TEST(pthread, pthread_condattr_setclock) {
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_REALTIME, clock);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_MONOTONIC, clock);
|
|
|
|
ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
|
|
}
|
|
|
|
TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
|
|
#if defined(__BIONIC__) // This tests a bionic implementation detail.
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
|
|
ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
|
|
|
|
pthread_cond_t cond_var;
|
|
ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
|
|
|
|
ASSERT_EQ(0, pthread_cond_signal(&cond_var));
|
|
ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
|
|
|
|
attr = static_cast<pthread_condattr_t>(cond_var.value);
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_MONOTONIC, clock);
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
|
|
#else // __BIONIC__
|
|
GTEST_LOG_(INFO) << "This test does nothing.\n";
|
|
#endif // __BIONIC__
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_timedlock) {
|
|
pthread_mutex_t m;
|
|
ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
|
|
|
|
// If the mutex is already locked, pthread_mutex_timedlock should time out.
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m));
|
|
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_nsec += 1;
|
|
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
|
|
|
|
// If the mutex is unlocked, pthread_mutex_timedlock should succeed.
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m));
|
|
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_nsec += 1;
|
|
ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
|
|
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&m));
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_getstack__main_thread) {
|
|
// This test is only meaningful for the main thread, so make sure we're running on it!
|
|
ASSERT_EQ(getpid(), syscall(__NR_gettid));
|
|
|
|
// Get the main thread's attributes.
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
|
|
// Check that we correctly report that the main thread has no guard page.
|
|
size_t guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
|
|
|
|
// Get the stack base and the stack size (both ways).
|
|
void* stack_base;
|
|
size_t stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
size_t stack_size2;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
// The two methods of asking for the stack size should agree.
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
|
|
// What does /proc/self/maps' [stack] line say?
|
|
void* maps_stack_hi = NULL;
|
|
FILE* fp = fopen("/proc/self/maps", "r");
|
|
ASSERT_TRUE(fp != NULL);
|
|
char line[BUFSIZ];
|
|
while (fgets(line, sizeof(line), fp) != NULL) {
|
|
uintptr_t lo, hi;
|
|
char name[10];
|
|
sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
|
|
if (strcmp(name, "[stack]") == 0) {
|
|
maps_stack_hi = reinterpret_cast<void*>(hi);
|
|
break;
|
|
}
|
|
}
|
|
fclose(fp);
|
|
|
|
// The stack size should correspond to RLIMIT_STACK.
|
|
rlimit rl;
|
|
ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
|
|
uint64_t original_rlim_cur = rl.rlim_cur;
|
|
#if defined(__BIONIC__)
|
|
if (rl.rlim_cur == RLIM_INFINITY) {
|
|
rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
|
|
}
|
|
#endif
|
|
EXPECT_EQ(rl.rlim_cur, stack_size);
|
|
|
|
auto guard = make_scope_guard([&rl, original_rlim_cur]() {
|
|
rl.rlim_cur = original_rlim_cur;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
});
|
|
|
|
// The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
|
|
// Remember that the stack grows down (and is mapped in on demand), so the low address of the
|
|
// region isn't very interesting.
|
|
EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
|
|
|
|
//
|
|
// What if RLIMIT_STACK is smaller than the stack's current extent?
|
|
//
|
|
rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
|
|
rl.rlim_max = RLIM_INFINITY;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
ASSERT_EQ(1024U, stack_size);
|
|
|
|
//
|
|
// What if RLIMIT_STACK isn't a whole number of pages?
|
|
//
|
|
rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
|
|
rl.rlim_max = RLIM_INFINITY;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
ASSERT_EQ(6666U, stack_size);
|
|
}
|
|
|
|
static void pthread_attr_getstack_18908062_helper(void*) {
|
|
char local_variable;
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
void* stack_base;
|
|
size_t stack_size;
|
|
pthread_attr_getstack(&attributes, &stack_base, &stack_size);
|
|
|
|
// Test whether &local_variable is in [stack_base, stack_base + stack_size).
|
|
ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
|
|
ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
|
|
}
|
|
|
|
// Check whether something on stack is in the range of
|
|
// [stack_base, stack_base + stack_size). see b/18908062.
|
|
TEST(pthread, pthread_attr_getstack_18908062) {
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
|
|
NULL));
|
|
pthread_join(t, NULL);
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
static void* pthread_gettid_np_helper(void* arg) {
|
|
*reinterpret_cast<pid_t*>(arg) = gettid();
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
TEST(pthread, pthread_gettid_np) {
|
|
#if defined(__BIONIC__)
|
|
ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
|
|
|
|
pid_t t_gettid_result;
|
|
pthread_t t;
|
|
pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
|
|
|
|
pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
|
|
|
|
pthread_join(t, NULL);
|
|
|
|
ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test does nothing.\n";
|
|
#endif
|
|
}
|
|
|
|
static size_t cleanup_counter = 0;
|
|
|
|
static void AbortCleanupRoutine(void*) {
|
|
abort();
|
|
}
|
|
|
|
static void CountCleanupRoutine(void*) {
|
|
++cleanup_counter;
|
|
}
|
|
|
|
static void PthreadCleanupTester() {
|
|
pthread_cleanup_push(CountCleanupRoutine, NULL);
|
|
pthread_cleanup_push(CountCleanupRoutine, NULL);
|
|
pthread_cleanup_push(AbortCleanupRoutine, NULL);
|
|
|
|
pthread_cleanup_pop(0); // Pop the abort without executing it.
|
|
pthread_cleanup_pop(1); // Pop one count while executing it.
|
|
ASSERT_EQ(1U, cleanup_counter);
|
|
// Exit while the other count is still on the cleanup stack.
|
|
pthread_exit(NULL);
|
|
|
|
// Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
|
|
pthread_cleanup_pop(0);
|
|
}
|
|
|
|
static void* PthreadCleanupStartRoutine(void*) {
|
|
PthreadCleanupTester();
|
|
return NULL;
|
|
}
|
|
|
|
TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
|
|
pthread_join(t, NULL);
|
|
ASSERT_EQ(2U, cleanup_counter);
|
|
}
|
|
|
|
TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
|
|
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
|
|
}
|
|
|
|
TEST(pthread, pthread_mutexattr_gettype) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
|
|
int attr_type;
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_NORMAL) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
|
|
|
|
pthread_mutex_t lock;
|
|
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
|
|
|
|
pthread_mutex_t lock;
|
|
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&lock));
|
|
ASSERT_EQ(EDEADLK, pthread_mutex_lock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_trylock(&lock));
|
|
ASSERT_EQ(EBUSY, pthread_mutex_trylock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_RECURSIVE) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
|
|
|
|
pthread_mutex_t lock;
|
|
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_lock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_trylock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(EPERM, pthread_mutex_unlock(&lock));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
|
|
}
|