a406ee6d5f
bionic_systrace.h contains an implementation of tracing that can be used with systrace.py and its associated viewer. pthread_mutex now uses this tracing to track pthread_mutex contention, which can be enabled by using the "bionic" command line option to systrace. Bug: 15116468 Change-Id: I30ed5b377c91ca4c36568a0e647ddf95d4e4a61a
754 lines
27 KiB
C++
754 lines
27 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <sys/mman.h>
|
|
#include <unistd.h>
|
|
|
|
#include "pthread_internal.h"
|
|
|
|
#include "private/bionic_atomic_inline.h"
|
|
#include "private/bionic_futex.h"
|
|
#include "private/bionic_tls.h"
|
|
|
|
#include "private/bionic_systrace.h"
|
|
|
|
extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
|
|
extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
|
|
|
|
/* a mutex is implemented as a 32-bit integer holding the following fields
|
|
*
|
|
* bits: name description
|
|
* 31-16 tid owner thread's tid (recursive and errorcheck only)
|
|
* 15-14 type mutex type
|
|
* 13 shared process-shared flag
|
|
* 12-2 counter counter of recursive mutexes
|
|
* 1-0 state lock state (0, 1 or 2)
|
|
*/
|
|
|
|
/* Convenience macro, creates a mask of 'bits' bits that starts from
|
|
* the 'shift'-th least significant bit in a 32-bit word.
|
|
*
|
|
* Examples: FIELD_MASK(0,4) -> 0xf
|
|
* FIELD_MASK(16,9) -> 0x1ff0000
|
|
*/
|
|
#define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift))
|
|
|
|
/* This one is used to create a bit pattern from a given field value */
|
|
#define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift))
|
|
|
|
/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
|
|
#define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
|
|
|
|
/* Mutex state:
|
|
*
|
|
* 0 for unlocked
|
|
* 1 for locked, no waiters
|
|
* 2 for locked, maybe waiters
|
|
*/
|
|
#define MUTEX_STATE_SHIFT 0
|
|
#define MUTEX_STATE_LEN 2
|
|
|
|
#define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
|
|
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
|
|
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
|
|
|
|
#define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
|
|
#define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
|
|
#define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
|
|
|
|
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
|
|
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
|
|
|
|
#define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
|
|
#define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
|
|
#define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
|
|
|
|
/* return true iff the mutex if locked with no waiters */
|
|
#define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
|
|
|
|
/* return true iff the mutex if locked with maybe waiters */
|
|
#define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
|
|
|
|
/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
|
|
#define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
|
|
|
|
/* Mutex counter:
|
|
*
|
|
* We need to check for overflow before incrementing, and we also need to
|
|
* detect when the counter is 0
|
|
*/
|
|
#define MUTEX_COUNTER_SHIFT 2
|
|
#define MUTEX_COUNTER_LEN 11
|
|
#define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
|
|
|
|
#define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
|
|
#define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
|
|
|
|
/* Used to increment the counter directly after overflow has been checked */
|
|
#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
|
|
|
|
/* Returns true iff the counter is 0 */
|
|
#define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
|
|
|
|
/* Mutex shared bit flag
|
|
*
|
|
* This flag is set to indicate that the mutex is shared among processes.
|
|
* This changes the futex opcode we use for futex wait/wake operations
|
|
* (non-shared operations are much faster).
|
|
*/
|
|
#define MUTEX_SHARED_SHIFT 13
|
|
#define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
|
|
|
|
/* Mutex type:
|
|
*
|
|
* We support normal, recursive and errorcheck mutexes.
|
|
*
|
|
* The constants defined here *cannot* be changed because they must match
|
|
* the C library ABI which defines the following initialization values in
|
|
* <pthread.h>:
|
|
*
|
|
* __PTHREAD_MUTEX_INIT_VALUE
|
|
* __PTHREAD_RECURSIVE_MUTEX_VALUE
|
|
* __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
|
|
*/
|
|
#define MUTEX_TYPE_SHIFT 14
|
|
#define MUTEX_TYPE_LEN 2
|
|
#define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
|
|
|
|
#define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
|
|
#define MUTEX_TYPE_RECURSIVE 1
|
|
#define MUTEX_TYPE_ERRORCHECK 2
|
|
|
|
#define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
|
|
|
|
#define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
|
|
#define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
|
|
#define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
|
|
|
|
/* Mutex owner field:
|
|
*
|
|
* This is only used for recursive and errorcheck mutexes. It holds the
|
|
* tid of the owning thread. Note that this works because the Linux
|
|
* kernel _only_ uses 16-bit values for tids.
|
|
*
|
|
* More specifically, it will wrap to 10000 when it reaches over 32768 for
|
|
* application processes. You can check this by running the following inside
|
|
* an adb shell session:
|
|
*
|
|
OLDPID=$$;
|
|
while true; do
|
|
NEWPID=$(sh -c 'echo $$')
|
|
if [ "$NEWPID" -gt 32768 ]; then
|
|
echo "AARGH: new PID $NEWPID is too high!"
|
|
exit 1
|
|
fi
|
|
if [ "$NEWPID" -lt "$OLDPID" ]; then
|
|
echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
|
|
else
|
|
echo -n "$NEWPID!"
|
|
fi
|
|
OLDPID=$NEWPID
|
|
done
|
|
|
|
* Note that you can run the same example on a desktop Linux system,
|
|
* the wrapping will also happen at 32768, but will go back to 300 instead.
|
|
*/
|
|
#define MUTEX_OWNER_SHIFT 16
|
|
#define MUTEX_OWNER_LEN 16
|
|
|
|
#define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
|
|
#define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
|
|
|
|
/* Convenience macros.
|
|
*
|
|
* These are used to form or modify the bit pattern of a given mutex value
|
|
*/
|
|
|
|
|
|
|
|
/* a mutex attribute holds the following fields
|
|
*
|
|
* bits: name description
|
|
* 0-3 type type of mutex
|
|
* 4 shared process-shared flag
|
|
*/
|
|
#define MUTEXATTR_TYPE_MASK 0x000f
|
|
#define MUTEXATTR_SHARED_MASK 0x0010
|
|
|
|
|
|
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
|
|
{
|
|
*attr = PTHREAD_MUTEX_DEFAULT;
|
|
return 0;
|
|
}
|
|
|
|
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
|
|
{
|
|
*attr = -1;
|
|
return 0;
|
|
}
|
|
|
|
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
|
|
{
|
|
int type = (*attr & MUTEXATTR_TYPE_MASK);
|
|
|
|
if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*type_p = type;
|
|
return 0;
|
|
}
|
|
|
|
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
|
|
{
|
|
if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
|
|
return EINVAL;
|
|
}
|
|
|
|
*attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
|
|
return 0;
|
|
}
|
|
|
|
/* process-shared mutexes are not supported at the moment */
|
|
|
|
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
|
|
{
|
|
switch (pshared) {
|
|
case PTHREAD_PROCESS_PRIVATE:
|
|
*attr &= ~MUTEXATTR_SHARED_MASK;
|
|
return 0;
|
|
|
|
case PTHREAD_PROCESS_SHARED:
|
|
/* our current implementation of pthread actually supports shared
|
|
* mutexes but won't cleanup if a process dies with the mutex held.
|
|
* Nevertheless, it's better than nothing. Shared mutexes are used
|
|
* by surfaceflinger and audioflinger.
|
|
*/
|
|
*attr |= MUTEXATTR_SHARED_MASK;
|
|
return 0;
|
|
}
|
|
return EINVAL;
|
|
}
|
|
|
|
int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
|
|
*pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
|
|
return 0;
|
|
}
|
|
|
|
int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr) {
|
|
if (__predict_true(attr == NULL)) {
|
|
mutex->value = MUTEX_TYPE_BITS_NORMAL;
|
|
return 0;
|
|
}
|
|
|
|
int value = 0;
|
|
if ((*attr & MUTEXATTR_SHARED_MASK) != 0) {
|
|
value |= MUTEX_SHARED_MASK;
|
|
}
|
|
|
|
switch (*attr & MUTEXATTR_TYPE_MASK) {
|
|
case PTHREAD_MUTEX_NORMAL:
|
|
value |= MUTEX_TYPE_BITS_NORMAL;
|
|
break;
|
|
case PTHREAD_MUTEX_RECURSIVE:
|
|
value |= MUTEX_TYPE_BITS_RECURSIVE;
|
|
break;
|
|
case PTHREAD_MUTEX_ERRORCHECK:
|
|
value |= MUTEX_TYPE_BITS_ERRORCHECK;
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
mutex->value = value;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Lock a non-recursive mutex.
|
|
*
|
|
* As noted above, there are three states:
|
|
* 0 (unlocked, no contention)
|
|
* 1 (locked, no contention)
|
|
* 2 (locked, contention)
|
|
*
|
|
* Non-recursive mutexes don't use the thread-id or counter fields, and the
|
|
* "type" value is zero, so the only bits that will be set are the ones in
|
|
* the lock state field.
|
|
*/
|
|
static inline void _normal_lock(pthread_mutex_t* mutex, int shared) {
|
|
/* convenience shortcuts */
|
|
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
|
|
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
|
/*
|
|
* The common case is an unlocked mutex, so we begin by trying to
|
|
* change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
|
|
* __bionic_cmpxchg() returns 0 if it made the swap successfully.
|
|
* If the result is nonzero, this lock is already held by another thread.
|
|
*/
|
|
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
|
|
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
|
/*
|
|
* We want to go to sleep until the mutex is available, which
|
|
* requires promoting it to state 2 (CONTENDED). We need to
|
|
* swap in the new state value and then wait until somebody wakes us up.
|
|
*
|
|
* __bionic_swap() returns the previous value. We swap 2 in and
|
|
* see if we got zero back; if so, we have acquired the lock. If
|
|
* not, another thread still holds the lock and we wait again.
|
|
*
|
|
* The second argument to the __futex_wait() call is compared
|
|
* against the current value. If it doesn't match, __futex_wait()
|
|
* returns immediately (otherwise, it sleeps for a time specified
|
|
* by the third argument; 0 means sleep forever). This ensures
|
|
* that the mutex is in state 2 when we go to sleep on it, which
|
|
* guarantees a wake-up call.
|
|
*/
|
|
|
|
ScopedTrace trace("Contending for pthread mutex");
|
|
|
|
|
|
while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
|
|
__futex_wait_ex(&mutex->value, shared, locked_contended, NULL);
|
|
}
|
|
}
|
|
ANDROID_MEMBAR_FULL();
|
|
}
|
|
|
|
/*
|
|
* Release a non-recursive mutex. The caller is responsible for determining
|
|
* that we are in fact the owner of this lock.
|
|
*/
|
|
static inline void _normal_unlock(pthread_mutex_t* mutex, int shared) {
|
|
ANDROID_MEMBAR_FULL();
|
|
|
|
/*
|
|
* The mutex state will be 1 or (rarely) 2. We use an atomic decrement
|
|
* to release the lock. __bionic_atomic_dec() returns the previous value;
|
|
* if it wasn't 1 we have to do some additional work.
|
|
*/
|
|
if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
|
|
/*
|
|
* Start by releasing the lock. The decrement changed it from
|
|
* "contended lock" to "uncontended lock", which means we still
|
|
* hold it, and anybody who tries to sneak in will push it back
|
|
* to state 2.
|
|
*
|
|
* Once we set it to zero the lock is up for grabs. We follow
|
|
* this with a __futex_wake() to ensure that one of the waiting
|
|
* threads has a chance to grab it.
|
|
*
|
|
* This doesn't cause a race with the swap/wait pair in
|
|
* _normal_lock(), because the __futex_wait() call there will
|
|
* return immediately if the mutex value isn't 2.
|
|
*/
|
|
mutex->value = shared;
|
|
|
|
/*
|
|
* Wake up one waiting thread. We don't know which thread will be
|
|
* woken or when it'll start executing -- futexes make no guarantees
|
|
* here. There may not even be a thread waiting.
|
|
*
|
|
* The newly-woken thread will replace the 0 we just set above
|
|
* with 2, which means that when it eventually releases the mutex
|
|
* it will also call FUTEX_WAKE. This results in one extra wake
|
|
* call whenever a lock is contended, but lets us avoid forgetting
|
|
* anyone without requiring us to track the number of sleepers.
|
|
*
|
|
* It's possible for another thread to sneak in and grab the lock
|
|
* between the zero assignment above and the wake call below. If
|
|
* the new thread is "slow" and holds the lock for a while, we'll
|
|
* wake up a sleeper, which will swap in a 2 and then go back to
|
|
* sleep since the lock is still held. If the new thread is "fast",
|
|
* running to completion before we call wake, the thread we
|
|
* eventually wake will find an unlocked mutex and will execute.
|
|
* Either way we have correct behavior and nobody is orphaned on
|
|
* the wait queue.
|
|
*/
|
|
__futex_wake_ex(&mutex->value, shared, 1);
|
|
}
|
|
}
|
|
|
|
/* This common inlined function is used to increment the counter of an
|
|
* errorcheck or recursive mutex.
|
|
*
|
|
* For errorcheck mutexes, it will return EDEADLK
|
|
* If the counter overflows, it will return EAGAIN
|
|
* Otherwise, it atomically increments the counter and returns 0
|
|
* after providing an acquire barrier.
|
|
*
|
|
* mtype is the current mutex type
|
|
* mvalue is the current mutex value (already loaded)
|
|
* mutex pointers to the mutex.
|
|
*/
|
|
static inline __always_inline int _recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype) {
|
|
if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
|
|
/* trying to re-lock a mutex we already acquired */
|
|
return EDEADLK;
|
|
}
|
|
|
|
/* Detect recursive lock overflow and return EAGAIN.
|
|
* This is safe because only the owner thread can modify the
|
|
* counter bits in the mutex value.
|
|
*/
|
|
if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
|
|
return EAGAIN;
|
|
}
|
|
|
|
/* We own the mutex, but other threads are able to change
|
|
* the lower bits (e.g. promoting it to "contended"), so we
|
|
* need to use an atomic cmpxchg loop to update the counter.
|
|
*/
|
|
for (;;) {
|
|
/* increment counter, overflow was already checked */
|
|
int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
|
|
if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
|
|
/* mutex is still locked, not need for a memory barrier */
|
|
return 0;
|
|
}
|
|
/* the value was changed, this happens when another thread changes
|
|
* the lower state bits from 1 to 2 to indicate contention. This
|
|
* cannot change the counter, so simply reload and try again.
|
|
*/
|
|
mvalue = mutex->value;
|
|
}
|
|
}
|
|
|
|
int pthread_mutex_lock(pthread_mutex_t* mutex) {
|
|
int mvalue, mtype, tid, shared;
|
|
|
|
mvalue = mutex->value;
|
|
mtype = (mvalue & MUTEX_TYPE_MASK);
|
|
shared = (mvalue & MUTEX_SHARED_MASK);
|
|
|
|
/* Handle non-recursive case first */
|
|
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
|
|
_normal_lock(mutex, shared);
|
|
return 0;
|
|
}
|
|
|
|
/* Do we already own this recursive or error-check mutex ? */
|
|
tid = __get_thread()->tid;
|
|
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
|
|
return _recursive_increment(mutex, mvalue, mtype);
|
|
|
|
/* Add in shared state to avoid extra 'or' operations below */
|
|
mtype |= shared;
|
|
|
|
/* First, if the mutex is unlocked, try to quickly acquire it.
|
|
* In the optimistic case where this works, set the state to 1 to
|
|
* indicate locked with no contention */
|
|
if (mvalue == mtype) {
|
|
int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
|
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
/* argh, the value changed, reload before entering the loop */
|
|
mvalue = mutex->value;
|
|
}
|
|
|
|
ScopedTrace trace("Contending for pthread mutex");
|
|
|
|
for (;;) {
|
|
int newval;
|
|
|
|
/* if the mutex is unlocked, its value should be 'mtype' and
|
|
* we try to acquire it by setting its owner and state atomically.
|
|
* NOTE: We put the state to 2 since we _know_ there is contention
|
|
* when we are in this loop. This ensures all waiters will be
|
|
* unlocked.
|
|
*/
|
|
if (mvalue == mtype) {
|
|
newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
|
/* TODO: Change this to __bionic_cmpxchg_acquire when we
|
|
* implement it to get rid of the explicit memory
|
|
* barrier below.
|
|
*/
|
|
if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
|
|
mvalue = mutex->value;
|
|
continue;
|
|
}
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
|
|
/* the mutex is already locked by another thread, if its state is 1
|
|
* we will change it to 2 to indicate contention. */
|
|
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
|
|
newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
|
|
if (__predict_false(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
|
|
mvalue = mutex->value;
|
|
continue;
|
|
}
|
|
mvalue = newval;
|
|
}
|
|
|
|
/* wait until the mutex is unlocked */
|
|
__futex_wait_ex(&mutex->value, shared, mvalue, NULL);
|
|
|
|
mvalue = mutex->value;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
int pthread_mutex_unlock(pthread_mutex_t* mutex) {
|
|
int mvalue, mtype, tid, shared;
|
|
|
|
mvalue = mutex->value;
|
|
mtype = (mvalue & MUTEX_TYPE_MASK);
|
|
shared = (mvalue & MUTEX_SHARED_MASK);
|
|
|
|
/* Handle common case first */
|
|
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
|
|
_normal_unlock(mutex, shared);
|
|
return 0;
|
|
}
|
|
|
|
/* Do we already own this recursive or error-check mutex ? */
|
|
tid = __get_thread()->tid;
|
|
if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
|
|
return EPERM;
|
|
|
|
/* If the counter is > 0, we can simply decrement it atomically.
|
|
* Since other threads can mutate the lower state bits (and only the
|
|
* lower state bits), use a cmpxchg to do it.
|
|
*/
|
|
if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
|
|
for (;;) {
|
|
int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
|
|
if (__predict_true(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
|
|
/* success: we still own the mutex, so no memory barrier */
|
|
return 0;
|
|
}
|
|
/* the value changed, so reload and loop */
|
|
mvalue = mutex->value;
|
|
}
|
|
}
|
|
|
|
/* the counter is 0, so we're going to unlock the mutex by resetting
|
|
* its value to 'unlocked'. We need to perform a swap in order
|
|
* to read the current state, which will be 2 if there are waiters
|
|
* to awake.
|
|
*
|
|
* TODO: Change this to __bionic_swap_release when we implement it
|
|
* to get rid of the explicit memory barrier below.
|
|
*/
|
|
ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */
|
|
mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
|
|
|
|
/* Wake one waiting thread, if any */
|
|
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
|
|
__futex_wake_ex(&mutex->value, shared, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int pthread_mutex_trylock(pthread_mutex_t* mutex) {
|
|
int mvalue, mtype, tid, shared;
|
|
|
|
mvalue = mutex->value;
|
|
mtype = (mvalue & MUTEX_TYPE_MASK);
|
|
shared = (mvalue & MUTEX_SHARED_MASK);
|
|
|
|
/* Handle common case first */
|
|
if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) )
|
|
{
|
|
if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
|
|
shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
|
|
&mutex->value) == 0) {
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
|
|
return EBUSY;
|
|
}
|
|
|
|
/* Do we already own this recursive or error-check mutex ? */
|
|
tid = __get_thread()->tid;
|
|
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
|
|
return _recursive_increment(mutex, mvalue, mtype);
|
|
|
|
/* Same as pthread_mutex_lock, except that we don't want to wait, and
|
|
* the only operation that can succeed is a single cmpxchg to acquire the
|
|
* lock if it is released / not owned by anyone. No need for a complex loop.
|
|
*/
|
|
mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
|
|
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
|
|
|
if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
|
|
return EBUSY;
|
|
}
|
|
|
|
static int __pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs_timeout, clockid_t clock) {
|
|
timespec ts;
|
|
|
|
int mvalue = mutex->value;
|
|
int mtype = (mvalue & MUTEX_TYPE_MASK);
|
|
int shared = (mvalue & MUTEX_SHARED_MASK);
|
|
|
|
// Handle common case first.
|
|
if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
|
|
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
|
|
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
|
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
|
|
|
// Fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0.
|
|
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
|
|
ScopedTrace trace("Contending for timed pthread mutex");
|
|
|
|
// Loop while needed.
|
|
while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
|
|
if (__timespec_from_absolute(&ts, abs_timeout, clock) < 0) {
|
|
return ETIMEDOUT;
|
|
}
|
|
__futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
|
|
}
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
|
|
// Do we already own this recursive or error-check mutex?
|
|
pid_t tid = __get_thread()->tid;
|
|
if (tid == MUTEX_OWNER_FROM_BITS(mvalue)) {
|
|
return _recursive_increment(mutex, mvalue, mtype);
|
|
}
|
|
|
|
// The following implements the same loop as pthread_mutex_lock_impl
|
|
// but adds checks to ensure that the operation never exceeds the
|
|
// absolute expiration time.
|
|
mtype |= shared;
|
|
|
|
// First try a quick lock.
|
|
if (mvalue == mtype) {
|
|
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
|
|
if (__predict_true(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
mvalue = mutex->value;
|
|
}
|
|
|
|
ScopedTrace trace("Contending for timed pthread mutex");
|
|
|
|
while (true) {
|
|
// If the value is 'unlocked', try to acquire it directly.
|
|
// NOTE: put state to 2 since we know there is contention.
|
|
if (mvalue == mtype) { // Unlocked.
|
|
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
|
|
if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
|
|
ANDROID_MEMBAR_FULL();
|
|
return 0;
|
|
}
|
|
// The value changed before we could lock it. We need to check
|
|
// the time to avoid livelocks, reload the value, then loop again.
|
|
if (__timespec_from_absolute(&ts, abs_timeout, clock) < 0) {
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
mvalue = mutex->value;
|
|
continue;
|
|
}
|
|
|
|
// The value is locked. If 'uncontended', try to switch its state
|
|
// to 'contented' to ensure we get woken up later.
|
|
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
|
|
int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
|
|
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
|
|
// This failed because the value changed, reload it.
|
|
mvalue = mutex->value;
|
|
} else {
|
|
// This succeeded, update mvalue.
|
|
mvalue = newval;
|
|
}
|
|
}
|
|
|
|
// Check time and update 'ts'.
|
|
if (__timespec_from_absolute(&ts, abs_timeout, clock) < 0) {
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
// Only wait to be woken up if the state is '2', otherwise we'll
|
|
// simply loop right now. This can happen when the second cmpxchg
|
|
// in our loop failed because the mutex was unlocked by another thread.
|
|
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
|
|
if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == -ETIMEDOUT) {
|
|
return ETIMEDOUT;
|
|
}
|
|
mvalue = mutex->value;
|
|
}
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#if !defined(__LP64__)
|
|
extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex, unsigned ms) {
|
|
timespec abs_timeout;
|
|
clock_gettime(CLOCK_MONOTONIC, &abs_timeout);
|
|
abs_timeout.tv_sec += ms / 1000;
|
|
abs_timeout.tv_nsec += (ms % 1000) * 1000000;
|
|
if (abs_timeout.tv_nsec >= 1000000000) {
|
|
abs_timeout.tv_sec++;
|
|
abs_timeout.tv_nsec -= 1000000000;
|
|
}
|
|
|
|
int error = __pthread_mutex_timedlock(mutex, &abs_timeout, CLOCK_MONOTONIC);
|
|
if (error == ETIMEDOUT) {
|
|
error = EBUSY;
|
|
}
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
int pthread_mutex_timedlock(pthread_mutex_t* mutex, const timespec* abs_timeout) {
|
|
return __pthread_mutex_timedlock(mutex, abs_timeout, CLOCK_REALTIME);
|
|
}
|
|
|
|
int pthread_mutex_destroy(pthread_mutex_t* mutex) {
|
|
// Use trylock to ensure that the mutex is valid and not already locked.
|
|
int error = pthread_mutex_trylock(mutex);
|
|
if (error != 0) {
|
|
return error;
|
|
}
|
|
mutex->value = 0xdead10cc;
|
|
return 0;
|
|
}
|