platform_bionic/tests/sys_ptrace_test.cpp
Elliott Hughes 6a65ccdf52 Remove mips test workarounds.
The mips/mips64 targets were never able to pass these tests, and the
supported architectures don't need any of these workarounds.

Test: treehugger
Change-Id: I640a8b7a98ae13d9d9cdb09b0fbef61d31d4c79a
2020-02-13 09:48:14 -08:00

579 lines
18 KiB
C++

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/ptrace.h>
#include <elf.h>
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <sys/prctl.h>
#include <sys/ptrace.h>
#include <sys/uio.h>
#include <sys/user.h>
#include <sys/wait.h>
#include <unistd.h>
#include <chrono>
#include <thread>
#include <gtest/gtest.h>
#include <android-base/macros.h>
#include <android-base/unique_fd.h>
#include "utils.h"
using namespace std::chrono_literals;
using android::base::unique_fd;
// Host libc does not define this.
#ifndef TRAP_HWBKPT
#define TRAP_HWBKPT 4
#endif
class ChildGuard {
public:
explicit ChildGuard(pid_t pid) : pid(pid) {}
~ChildGuard() {
kill(pid, SIGKILL);
int status;
TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
}
private:
pid_t pid;
};
enum class HwFeature { Watchpoint, Breakpoint };
static void check_hw_feature_supported(pid_t child, HwFeature feature) {
#if defined(__arm__)
long capabilities;
long result = ptrace(PTRACE_GETHBPREGS, child, 0, &capabilities);
if (result == -1) {
EXPECT_EQ(EIO, errno);
GTEST_SKIP() << "Hardware debug support disabled at kernel configuration time";
}
uint8_t hb_count = capabilities & 0xff;
capabilities >>= 8;
uint8_t wp_count = capabilities & 0xff;
capabilities >>= 8;
uint8_t max_wp_size = capabilities & 0xff;
if (max_wp_size == 0) {
GTEST_SKIP() << "Kernel reports zero maximum watchpoint size";
} else if (feature == HwFeature::Watchpoint && wp_count == 0) {
GTEST_SKIP() << "Kernel reports zero hardware watchpoints";
} else if (feature == HwFeature::Breakpoint && hb_count == 0) {
GTEST_SKIP() << "Kernel reports zero hardware breakpoints";
}
#elif defined(__aarch64__)
user_hwdebug_state dreg_state;
iovec iov;
iov.iov_base = &dreg_state;
iov.iov_len = sizeof(dreg_state);
long result = ptrace(PTRACE_GETREGSET, child,
feature == HwFeature::Watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK, &iov);
if (result == -1) {
ASSERT_EQ(EINVAL, errno);
GTEST_SKIP() << "Hardware support missing";
} else if ((dreg_state.dbg_info & 0xff) == 0) {
if (feature == HwFeature::Watchpoint) {
GTEST_SKIP() << "Kernel reports zero hardware watchpoints";
} else {
GTEST_SKIP() << "Kernel reports zero hardware breakpoints";
}
}
#else
// We assume watchpoints and breakpoints are always supported on x86.
UNUSED(child);
UNUSED(feature);
#endif
}
static void set_watchpoint(pid_t child, uintptr_t address, size_t size) {
ASSERT_EQ(0u, address & 0x7) << "address: " << address;
#if defined(__arm__) || defined(__aarch64__)
const unsigned byte_mask = (1 << size) - 1;
const unsigned type = 2; // Write.
const unsigned enable = 1;
const unsigned control = byte_mask << 5 | type << 3 | enable;
#ifdef __arm__
ASSERT_EQ(0, ptrace(PTRACE_SETHBPREGS, child, -1, &address)) << strerror(errno);
ASSERT_EQ(0, ptrace(PTRACE_SETHBPREGS, child, -2, &control)) << strerror(errno);
#else // aarch64
user_hwdebug_state dreg_state;
memset(&dreg_state, 0, sizeof dreg_state);
dreg_state.dbg_regs[0].addr = address;
dreg_state.dbg_regs[0].ctrl = control;
iovec iov;
iov.iov_base = &dreg_state;
iov.iov_len = offsetof(user_hwdebug_state, dbg_regs) + sizeof(dreg_state.dbg_regs[0]);
ASSERT_EQ(0, ptrace(PTRACE_SETREGSET, child, NT_ARM_HW_WATCH, &iov)) << strerror(errno);
#endif
#elif defined(__i386__) || defined(__x86_64__)
ASSERT_EQ(0, ptrace(PTRACE_POKEUSER, child, offsetof(user, u_debugreg[0]), address)) << strerror(errno);
errno = 0;
unsigned data = ptrace(PTRACE_PEEKUSER, child, offsetof(user, u_debugreg[7]), nullptr);
ASSERT_EQ(0, errno);
const unsigned size_flag = (size == 8) ? 2 : size - 1;
const unsigned enable = 1;
const unsigned type = 1; // Write.
const unsigned mask = 3 << 18 | 3 << 16 | 1;
const unsigned value = size_flag << 18 | type << 16 | enable;
data &= mask;
data |= value;
ASSERT_EQ(0, ptrace(PTRACE_POKEUSER, child, offsetof(user, u_debugreg[7]), data)) << strerror(errno);
#else
UNUSED(child);
UNUSED(address);
UNUSED(size);
#endif
}
template <typename T>
static void run_watchpoint_test(std::function<void(T&)> child_func, size_t offset, size_t size) {
alignas(16) T data{};
pid_t child = fork();
ASSERT_NE(-1, child) << strerror(errno);
if (child == 0) {
// Extra precaution: make sure we go away if anything happens to our parent.
if (prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0) == -1) {
perror("prctl(PR_SET_PDEATHSIG)");
_exit(1);
}
if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) == -1) {
perror("ptrace(PTRACE_TRACEME)");
_exit(2);
}
child_func(data);
_exit(0);
}
ChildGuard guard(child);
int status;
ASSERT_EQ(child, TEMP_FAILURE_RETRY(waitpid(child, &status, __WALL))) << strerror(errno);
ASSERT_TRUE(WIFSTOPPED(status)) << "Status was: " << status;
ASSERT_EQ(SIGSTOP, WSTOPSIG(status)) << "Status was: " << status;
check_hw_feature_supported(child, HwFeature::Watchpoint);
if (::testing::Test::IsSkipped()) {
return;
}
set_watchpoint(child, uintptr_t(untag_address(&data)) + offset, size);
ASSERT_EQ(0, ptrace(PTRACE_CONT, child, nullptr, nullptr)) << strerror(errno);
ASSERT_EQ(child, TEMP_FAILURE_RETRY(waitpid(child, &status, __WALL))) << strerror(errno);
ASSERT_TRUE(WIFSTOPPED(status)) << "Status was: " << status;
ASSERT_EQ(SIGTRAP, WSTOPSIG(status)) << "Status was: " << status;
siginfo_t siginfo;
ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child, nullptr, &siginfo)) << strerror(errno);
ASSERT_EQ(TRAP_HWBKPT, siginfo.si_code);
#if defined(__arm__) || defined(__aarch64__)
ASSERT_LE(&data, siginfo.si_addr);
ASSERT_GT((&data) + 1, siginfo.si_addr);
#endif
}
template <typename T>
static void watchpoint_stress_child(unsigned cpu, T& data) {
cpu_set_t cpus;
CPU_ZERO(&cpus);
CPU_SET(cpu, &cpus);
if (sched_setaffinity(0, sizeof cpus, &cpus) == -1) {
perror("sched_setaffinity");
_exit(3);
}
raise(SIGSTOP); // Synchronize with the tracer, let it set the watchpoint.
data = 1; // Now trigger the watchpoint.
}
template <typename T>
static void run_watchpoint_stress(size_t cpu) {
run_watchpoint_test<T>(std::bind(watchpoint_stress_child<T>, cpu, std::placeholders::_1), 0,
sizeof(T));
}
// Test watchpoint API. The test is considered successful if our watchpoints get hit OR the
// system reports that watchpoint support is not present. We run the test for different
// watchpoint sizes, while pinning the process to each cpu in turn, for better coverage.
TEST(sys_ptrace, watchpoint_stress) {
cpu_set_t available_cpus;
ASSERT_EQ(0, sched_getaffinity(0, sizeof available_cpus, &available_cpus));
for (size_t cpu = 0; cpu < CPU_SETSIZE; ++cpu) {
if (!CPU_ISSET(cpu, &available_cpus)) continue;
run_watchpoint_stress<uint8_t>(cpu);
if (::testing::Test::IsSkipped()) {
// Only check first case, since all others would skip for same reason.
return;
}
run_watchpoint_stress<uint16_t>(cpu);
run_watchpoint_stress<uint32_t>(cpu);
#if defined(__LP64__)
run_watchpoint_stress<uint64_t>(cpu);
#endif
}
}
struct Uint128_t {
uint64_t data[2];
};
static void watchpoint_imprecise_child(Uint128_t& data) {
raise(SIGSTOP); // Synchronize with the tracer, let it set the watchpoint.
#if defined(__i386__) || defined(__x86_64__)
asm volatile("movdqa %%xmm0, %0" : : "m"(data));
#elif defined(__arm__)
asm volatile("stm %0, { r0, r1, r2, r3 }" : : "r"(&data));
#elif defined(__aarch64__)
asm volatile("stp x0, x1, %0" : : "m"(data));
#endif
}
// Test that the kernel is able to handle the case when the instruction writes
// to a larger block of memory than the one we are watching. If you see this
// test fail on arm64, you will likely need to cherry-pick fdfeff0f into your
// kernel.
TEST(sys_ptrace, watchpoint_imprecise) {
// This test relies on the infrastructure to timeout if the test hangs.
run_watchpoint_test<Uint128_t>(watchpoint_imprecise_child, 8, sizeof(void*));
}
static void __attribute__((noinline)) breakpoint_func() {
asm volatile("");
}
static void __attribute__((noreturn)) breakpoint_fork_child() {
// Extra precaution: make sure we go away if anything happens to our parent.
if (prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0) == -1) {
perror("prctl(PR_SET_PDEATHSIG)");
_exit(1);
}
if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) == -1) {
perror("ptrace(PTRACE_TRACEME)");
_exit(2);
}
raise(SIGSTOP); // Synchronize with the tracer, let it set the breakpoint.
breakpoint_func(); // Now trigger the breakpoint.
_exit(0);
}
static void set_breakpoint(pid_t child) {
uintptr_t address = uintptr_t(breakpoint_func);
#if defined(__arm__) || defined(__aarch64__)
address &= ~3;
const unsigned byte_mask = 0xf;
const unsigned enable = 1;
const unsigned control = byte_mask << 5 | enable;
#ifdef __arm__
ASSERT_EQ(0, ptrace(PTRACE_SETHBPREGS, child, 1, &address)) << strerror(errno);
ASSERT_EQ(0, ptrace(PTRACE_SETHBPREGS, child, 2, &control)) << strerror(errno);
#else // aarch64
user_hwdebug_state dreg_state;
memset(&dreg_state, 0, sizeof dreg_state);
dreg_state.dbg_regs[0].addr = reinterpret_cast<uintptr_t>(address);
dreg_state.dbg_regs[0].ctrl = control;
iovec iov;
iov.iov_base = &dreg_state;
iov.iov_len = offsetof(user_hwdebug_state, dbg_regs) + sizeof(dreg_state.dbg_regs[0]);
ASSERT_EQ(0, ptrace(PTRACE_SETREGSET, child, NT_ARM_HW_BREAK, &iov)) << strerror(errno);
#endif
#elif defined(__i386__) || defined(__x86_64__)
ASSERT_EQ(0, ptrace(PTRACE_POKEUSER, child, offsetof(user, u_debugreg[0]), address))
<< strerror(errno);
errno = 0;
unsigned data = ptrace(PTRACE_PEEKUSER, child, offsetof(user, u_debugreg[7]), nullptr);
ASSERT_EQ(0, errno);
const unsigned size = 0;
const unsigned enable = 1;
const unsigned type = 0; // Execute
const unsigned mask = 3 << 18 | 3 << 16 | 1;
const unsigned value = size << 18 | type << 16 | enable;
data &= mask;
data |= value;
ASSERT_EQ(0, ptrace(PTRACE_POKEUSER, child, offsetof(user, u_debugreg[7]), data))
<< strerror(errno);
#else
UNUSED(child);
UNUSED(address);
#endif
}
// Test hardware breakpoint API. The test is considered successful if the breakpoints get hit OR the
// system reports that hardware breakpoint support is not present.
TEST(sys_ptrace, hardware_breakpoint) {
pid_t child = fork();
ASSERT_NE(-1, child) << strerror(errno);
if (child == 0) breakpoint_fork_child();
ChildGuard guard(child);
int status;
ASSERT_EQ(child, TEMP_FAILURE_RETRY(waitpid(child, &status, __WALL))) << strerror(errno);
ASSERT_TRUE(WIFSTOPPED(status)) << "Status was: " << status;
ASSERT_EQ(SIGSTOP, WSTOPSIG(status)) << "Status was: " << status;
check_hw_feature_supported(child, HwFeature::Breakpoint);
if (::testing::Test::IsSkipped()) {
return;
}
set_breakpoint(child);
ASSERT_EQ(0, ptrace(PTRACE_CONT, child, nullptr, nullptr)) << strerror(errno);
ASSERT_EQ(child, TEMP_FAILURE_RETRY(waitpid(child, &status, __WALL))) << strerror(errno);
ASSERT_TRUE(WIFSTOPPED(status)) << "Status was: " << status;
ASSERT_EQ(SIGTRAP, WSTOPSIG(status)) << "Status was: " << status;
siginfo_t siginfo;
ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child, nullptr, &siginfo)) << strerror(errno);
ASSERT_EQ(TRAP_HWBKPT, siginfo.si_code);
}
class PtraceResumptionTest : public ::testing::Test {
public:
unique_fd worker_pipe_write;
pid_t worker = -1;
pid_t tracer = -1;
PtraceResumptionTest() {
unique_fd worker_pipe_read;
if (!android::base::Pipe(&worker_pipe_read, &worker_pipe_write)) {
err(1, "failed to create pipe");
}
// Second pipe to synchronize the Yama ptracer setup.
unique_fd worker_pipe_setup_read, worker_pipe_setup_write;
if (!android::base::Pipe(&worker_pipe_setup_read, &worker_pipe_setup_write)) {
err(1, "failed to create pipe");
}
worker = fork();
if (worker == -1) {
err(1, "failed to fork worker");
} else if (worker == 0) {
char buf;
// Allow the tracer process, which is not a direct process ancestor, to
// be able to use ptrace(2) on this process when Yama LSM is active.
if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY, 0, 0, 0) == -1) {
// if Yama is off prctl(PR_SET_PTRACER) returns EINVAL - don't log in this
// case since it's expected behaviour.
if (errno != EINVAL) {
err(1, "prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) failed for pid %d", getpid());
}
}
worker_pipe_setup_write.reset();
worker_pipe_write.reset();
TEMP_FAILURE_RETRY(read(worker_pipe_read.get(), &buf, sizeof(buf)));
exit(0);
} else {
// Wait until the Yama ptracer is setup.
char buf;
worker_pipe_setup_write.reset();
TEMP_FAILURE_RETRY(read(worker_pipe_setup_read.get(), &buf, sizeof(buf)));
}
}
~PtraceResumptionTest() override {
}
void AssertDeath(int signo);
void StartTracer(std::function<void()> f) {
tracer = fork();
ASSERT_NE(-1, tracer);
if (tracer == 0) {
f();
if (HasFatalFailure()) {
exit(1);
}
exit(0);
}
}
bool WaitForTracer() {
if (tracer == -1) {
errx(1, "tracer not started");
}
int result;
pid_t rc = TEMP_FAILURE_RETRY(waitpid(tracer, &result, 0));
if (rc != tracer) {
printf("waitpid returned %d (%s)\n", rc, strerror(errno));
return false;
}
if (!WIFEXITED(result) && !WIFSIGNALED(result)) {
printf("!WIFEXITED && !WIFSIGNALED\n");
return false;
}
if (WIFEXITED(result)) {
if (WEXITSTATUS(result) != 0) {
printf("tracer failed\n");
return false;
}
}
return true;
}
bool WaitForWorker() {
if (worker == -1) {
errx(1, "worker not started");
}
int result;
pid_t rc = TEMP_FAILURE_RETRY(waitpid(worker, &result, WNOHANG));
if (rc != 0) {
printf("worker exited prematurely\n");
return false;
}
worker_pipe_write.reset();
rc = TEMP_FAILURE_RETRY(waitpid(worker, &result, 0));
if (rc != worker) {
printf("waitpid for worker returned %d (%s)\n", rc, strerror(errno));
return false;
}
if (!WIFEXITED(result)) {
printf("worker didn't exit\n");
return false;
}
if (WEXITSTATUS(result) != 0) {
printf("worker exited with status %d\n", WEXITSTATUS(result));
return false;
}
return true;
}
};
static void wait_for_ptrace_stop(pid_t pid) {
while (true) {
int status;
pid_t rc = TEMP_FAILURE_RETRY(waitpid(pid, &status, __WALL));
if (rc != pid) {
abort();
}
if (WIFSTOPPED(status)) {
return;
}
}
}
TEST_F(PtraceResumptionTest, smoke) {
// Make sure that the worker doesn't exit before the tracer stops tracing.
StartTracer([this]() {
ASSERT_EQ(0, ptrace(PTRACE_SEIZE, worker, 0, 0)) << strerror(errno);
ASSERT_EQ(0, ptrace(PTRACE_INTERRUPT, worker, 0, 0)) << strerror(errno);
wait_for_ptrace_stop(worker);
std::this_thread::sleep_for(500ms);
});
worker_pipe_write.reset();
std::this_thread::sleep_for(250ms);
int result;
ASSERT_EQ(0, TEMP_FAILURE_RETRY(waitpid(worker, &result, WNOHANG)));
ASSERT_TRUE(WaitForTracer());
ASSERT_EQ(worker, TEMP_FAILURE_RETRY(waitpid(worker, &result, 0)));
}
TEST_F(PtraceResumptionTest, seize) {
StartTracer([this]() { ASSERT_EQ(0, ptrace(PTRACE_SEIZE, worker, 0, 0)) << strerror(errno); });
ASSERT_TRUE(WaitForTracer());
ASSERT_TRUE(WaitForWorker());
}
TEST_F(PtraceResumptionTest, seize_interrupt) {
StartTracer([this]() {
ASSERT_EQ(0, ptrace(PTRACE_SEIZE, worker, 0, 0)) << strerror(errno);
ASSERT_EQ(0, ptrace(PTRACE_INTERRUPT, worker, 0, 0)) << strerror(errno);
wait_for_ptrace_stop(worker);
});
ASSERT_TRUE(WaitForTracer());
ASSERT_TRUE(WaitForWorker());
}
TEST_F(PtraceResumptionTest, seize_interrupt_cont) {
StartTracer([this]() {
ASSERT_EQ(0, ptrace(PTRACE_SEIZE, worker, 0, 0)) << strerror(errno);
ASSERT_EQ(0, ptrace(PTRACE_INTERRUPT, worker, 0, 0)) << strerror(errno);
wait_for_ptrace_stop(worker);
ASSERT_EQ(0, ptrace(PTRACE_CONT, worker, 0, 0)) << strerror(errno);
});
ASSERT_TRUE(WaitForTracer());
ASSERT_TRUE(WaitForWorker());
}
TEST_F(PtraceResumptionTest, zombie_seize) {
StartTracer([this]() { ASSERT_EQ(0, ptrace(PTRACE_SEIZE, worker, 0, 0)) << strerror(errno); });
ASSERT_TRUE(WaitForWorker());
ASSERT_TRUE(WaitForTracer());
}
TEST_F(PtraceResumptionTest, zombie_seize_interrupt) {
StartTracer([this]() {
ASSERT_EQ(0, ptrace(PTRACE_SEIZE, worker, 0, 0)) << strerror(errno);
ASSERT_EQ(0, ptrace(PTRACE_INTERRUPT, worker, 0, 0)) << strerror(errno);
wait_for_ptrace_stop(worker);
});
ASSERT_TRUE(WaitForWorker());
ASSERT_TRUE(WaitForTracer());
}
TEST_F(PtraceResumptionTest, zombie_seize_interrupt_cont) {
StartTracer([this]() {
ASSERT_EQ(0, ptrace(PTRACE_SEIZE, worker, 0, 0)) << strerror(errno);
ASSERT_EQ(0, ptrace(PTRACE_INTERRUPT, worker, 0, 0)) << strerror(errno);
wait_for_ptrace_stop(worker);
ASSERT_EQ(0, ptrace(PTRACE_CONT, worker, 0, 0)) << strerror(errno);
});
ASSERT_TRUE(WaitForWorker());
ASSERT_TRUE(WaitForTracer());
}