platform_bionic/libc/bionic/pthread_create.cpp
Josh Gao 5450f86b31 Fix leak of bionic TLS when threads are detached.
__pthread_internal_free doesn't happen on threads that are detached,
causing the bionic TLS allocation (and guard pages) to be leaked.

Fix the leak, and name the allocations to make things apparent if this
ever happens again.

Bug: http://b/36045112
Test: manually ran a program that detached empty threads
Change-Id: Id1c7852b7384474244f7bf5a0f7da54ff962e0a1
2017-03-07 23:24:50 -08:00

304 lines
12 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <pthread.h>
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include "pthread_internal.h"
#include "private/bionic_macros.h"
#include "private/bionic_prctl.h"
#include "private/bionic_ssp.h"
#include "private/bionic_tls.h"
#include "private/libc_logging.h"
#include "private/ErrnoRestorer.h"
// x86 uses segment descriptors rather than a direct pointer to TLS.
#if defined(__i386__)
#include <asm/ldt.h>
void __init_user_desc(struct user_desc*, bool, void*);
#endif
extern "C" int __isthreaded;
// This code is used both by each new pthread and the code that initializes the main thread.
void __init_tls(pthread_internal_t* thread) {
// Slot 0 must point to itself. The x86 Linux kernel reads the TLS from %fs:0.
thread->tls[TLS_SLOT_SELF] = thread->tls;
thread->tls[TLS_SLOT_THREAD_ID] = thread;
// Add a guard page before and after.
size_t allocation_size = BIONIC_TLS_SIZE + 2 * PAGE_SIZE;
void* allocation = mmap(nullptr, allocation_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (allocation == MAP_FAILED) {
__libc_fatal("failed to allocate TLS");
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, allocation, allocation_size, "bionic TLS guard page");
thread->bionic_tls = reinterpret_cast<bionic_tls*>(static_cast<char*>(allocation) + PAGE_SIZE);
if (mprotect(thread->bionic_tls, BIONIC_TLS_SIZE, PROT_READ | PROT_WRITE) != 0) {
__libc_fatal("failed to mprotect TLS");
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, thread->bionic_tls, BIONIC_TLS_SIZE, "bionic TLS");
}
void __init_thread_stack_guard(pthread_internal_t* thread) {
// GCC looks in the TLS for the stack guard on x86, so copy it there from our global.
thread->tls[TLS_SLOT_STACK_GUARD] = reinterpret_cast<void*>(__stack_chk_guard);
}
void __init_alternate_signal_stack(pthread_internal_t* thread) {
// Create and set an alternate signal stack.
void* stack_base = mmap(NULL, SIGNAL_STACK_SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (stack_base != MAP_FAILED) {
// Create a guard page to catch stack overflows in signal handlers.
if (mprotect(stack_base, PAGE_SIZE, PROT_NONE) == -1) {
munmap(stack_base, SIGNAL_STACK_SIZE);
return;
}
stack_t ss;
ss.ss_sp = reinterpret_cast<uint8_t*>(stack_base) + PAGE_SIZE;
ss.ss_size = SIGNAL_STACK_SIZE - PAGE_SIZE;
ss.ss_flags = 0;
sigaltstack(&ss, NULL);
thread->alternate_signal_stack = stack_base;
// We can only use const static allocated string for mapped region name, as Android kernel
// uses the string pointer directly when dumping /proc/pid/maps.
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ss.ss_sp, ss.ss_size, "thread signal stack");
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, stack_base, PAGE_SIZE, "thread signal stack guard page");
}
}
int __init_thread(pthread_internal_t* thread) {
int error = 0;
if (__predict_true((thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) == 0)) {
atomic_init(&thread->join_state, THREAD_NOT_JOINED);
} else {
atomic_init(&thread->join_state, THREAD_DETACHED);
}
// Set the scheduling policy/priority of the thread.
if (thread->attr.sched_policy != SCHED_NORMAL) {
sched_param param;
param.sched_priority = thread->attr.sched_priority;
if (sched_setscheduler(thread->tid, thread->attr.sched_policy, &param) == -1) {
#if defined(__LP64__)
// For backwards compatibility reasons, we only report failures on 64-bit devices.
error = errno;
#endif
__libc_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create sched_setscheduler call failed: %s", strerror(errno));
}
}
thread->cleanup_stack = NULL;
return error;
}
static void* __create_thread_mapped_space(size_t mmap_size, size_t stack_guard_size) {
// Create a new private anonymous map.
int prot = PROT_READ | PROT_WRITE;
int flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE;
void* space = mmap(NULL, mmap_size, prot, flags, -1, 0);
if (space == MAP_FAILED) {
__libc_format_log(ANDROID_LOG_WARN,
"libc",
"pthread_create failed: couldn't allocate %zu-bytes mapped space: %s",
mmap_size, strerror(errno));
return NULL;
}
// Stack is at the lower end of mapped space, stack guard region is at the lower end of stack.
// Set the stack guard region to PROT_NONE, so we can detect thread stack overflow.
if (mprotect(space, stack_guard_size, PROT_NONE) == -1) {
__libc_format_log(ANDROID_LOG_WARN, "libc",
"pthread_create failed: couldn't mprotect PROT_NONE %zu-byte stack guard region: %s",
stack_guard_size, strerror(errno));
munmap(space, mmap_size);
return NULL;
}
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, space, stack_guard_size, "thread stack guard page");
return space;
}
static int __allocate_thread(pthread_attr_t* attr, pthread_internal_t** threadp, void** child_stack) {
size_t mmap_size;
uint8_t* stack_top;
if (attr->stack_base == NULL) {
// The caller didn't provide a stack, so allocate one.
// Make sure the stack size and guard size are multiples of PAGE_SIZE.
mmap_size = BIONIC_ALIGN(attr->stack_size + sizeof(pthread_internal_t), PAGE_SIZE);
attr->guard_size = BIONIC_ALIGN(attr->guard_size, PAGE_SIZE);
attr->stack_base = __create_thread_mapped_space(mmap_size, attr->guard_size);
if (attr->stack_base == NULL) {
return EAGAIN;
}
stack_top = reinterpret_cast<uint8_t*>(attr->stack_base) + mmap_size;
} else {
// Remember the mmap size is zero and we don't need to free it.
mmap_size = 0;
stack_top = reinterpret_cast<uint8_t*>(attr->stack_base) + attr->stack_size;
}
// Mapped space(or user allocated stack) is used for:
// pthread_internal_t
// thread stack (including guard page)
// To safely access the pthread_internal_t and thread stack, we need to find a 16-byte aligned boundary.
stack_top = reinterpret_cast<uint8_t*>(
(reinterpret_cast<uintptr_t>(stack_top) - sizeof(pthread_internal_t)) & ~0xf);
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(stack_top);
if (mmap_size == 0) {
// If thread was not allocated by mmap(), it may not have been cleared to zero.
// So assume the worst and zero it.
memset(thread, 0, sizeof(pthread_internal_t));
}
attr->stack_size = stack_top - reinterpret_cast<uint8_t*>(attr->stack_base);
thread->mmap_size = mmap_size;
thread->attr = *attr;
__init_tls(thread);
__init_thread_stack_guard(thread);
*threadp = thread;
*child_stack = stack_top;
return 0;
}
static int __pthread_start(void* arg) {
pthread_internal_t* thread = reinterpret_cast<pthread_internal_t*>(arg);
// Wait for our creating thread to release us. This lets it have time to
// notify gdb about this thread before we start doing anything.
// This also provides the memory barrier needed to ensure that all memory
// accesses previously made by the creating thread are visible to us.
thread->startup_handshake_lock.lock();
__init_alternate_signal_stack(thread);
void* result = thread->start_routine(thread->start_routine_arg);
pthread_exit(result);
return 0;
}
// A dummy start routine for pthread_create failures where we've created a thread but aren't
// going to run user code on it. We swap out the user's start routine for this and take advantage
// of the regular thread teardown to free up resources.
static void* __do_nothing(void*) {
return NULL;
}
int pthread_create(pthread_t* thread_out, pthread_attr_t const* attr,
void* (*start_routine)(void*), void* arg) {
ErrnoRestorer errno_restorer;
// Inform the rest of the C library that at least one thread was created.
__isthreaded = 1;
pthread_attr_t thread_attr;
if (attr == NULL) {
pthread_attr_init(&thread_attr);
} else {
thread_attr = *attr;
attr = NULL; // Prevent misuse below.
}
pthread_internal_t* thread = NULL;
void* child_stack = NULL;
int result = __allocate_thread(&thread_attr, &thread, &child_stack);
if (result != 0) {
return result;
}
// Create a lock for the thread to wait on once it starts so we can keep
// it from doing anything until after we notify the debugger about it
//
// This also provides the memory barrier we need to ensure that all
// memory accesses previously performed by this thread are visible to
// the new thread.
thread->startup_handshake_lock.init(false);
thread->startup_handshake_lock.lock();
thread->start_routine = start_routine;
thread->start_routine_arg = arg;
thread->set_cached_pid(getpid());
int flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM |
CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID;
void* tls = reinterpret_cast<void*>(thread->tls);
#if defined(__i386__)
// On x86 (but not x86-64), CLONE_SETTLS takes a pointer to a struct user_desc rather than
// a pointer to the TLS itself.
user_desc tls_descriptor;
__init_user_desc(&tls_descriptor, false, tls);
tls = &tls_descriptor;
#endif
int rc = clone(__pthread_start, child_stack, flags, thread, &(thread->tid), tls, &(thread->tid));
if (rc == -1) {
int clone_errno = errno;
// We don't have to unlock the mutex at all because clone(2) failed so there's no child waiting to
// be unblocked, but we're about to unmap the memory the mutex is stored in, so this serves as a
// reminder that you can't rewrite this function to use a ScopedPthreadMutexLocker.
thread->startup_handshake_lock.unlock();
if (thread->mmap_size != 0) {
munmap(thread->attr.stack_base, thread->mmap_size);
}
__libc_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: clone failed: %s", strerror(errno));
return clone_errno;
}
int init_errno = __init_thread(thread);
if (init_errno != 0) {
// Mark the thread detached and replace its start_routine with a no-op.
// Letting the thread run is the easiest way to clean up its resources.
atomic_store(&thread->join_state, THREAD_DETACHED);
__pthread_internal_add(thread);
thread->start_routine = __do_nothing;
thread->startup_handshake_lock.unlock();
return init_errno;
}
// Publish the pthread_t and unlock the mutex to let the new thread start running.
*thread_out = __pthread_internal_add(thread);
thread->startup_handshake_lock.unlock();
return 0;
}