platform_bionic/libc/bionic/time64.c
Almaz Mingaleev 5411aff6bb Bump tzcode from 2016g to 2022a*.
Upstream has renamed tzsetlcl to tzset_unlocked. As bionic's
implementation of tzset_unlock differs from upstream, these changes were
skipped.

Also, upstream has removed constants (SECSPERMIN, etc) from tzfile.h. As
they are used in strptime.c, I've decided to leave them in tzfile.h and
to not bring them into strptime.c.

HAVE_TZNAME and USG_COMPAT flags semantics were updated, thus setting
their values to 2 in Android.bp file. See
1a27ec76bc

* 4742526b7e
and 0e8f0b06ac
were picked up, which are not part of 2022a.

Changes were applied using following commands:
  1) Checkout tzcode repo
  2) Prepare patches for all tzcode file using
    git diff 2016g 2021e -- <file-name> > <file-name-patch>
  3) Apply these patches to files in bionic using
    patch -p1 <file-name> <file-name-patch>

Bug: 25413083
Test: CtsLibcoreTestCases
Test: CtsLibcoreOjTestCases
Test: CtsBionicTestCases

Change-Id: I9aba4cbeab30171a32f94d20c8e4057804a4c01f
2022-06-07 09:59:16 +01:00

807 lines
22 KiB
C

/*
Copyright (c) 2007-2008 Michael G Schwern
This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
The MIT License:
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
/* See http://code.google.com/p/y2038 for this code's origin */
#if defined(__LP64__)
#error This cruft should be LP32 only!
#endif
/*
Programmers who have available to them 64-bit time values as a 'long
long' type can use localtime64_r() and gmtime64_r() which correctly
converts the time even on 32-bit systems. Whether you have 64-bit time
values will depend on the operating system.
localtime64_r() is a 64-bit equivalent of localtime_r().
gmtime64_r() is a 64-bit equivalent of gmtime_r().
*/
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include "time64.h"
/* BIONIC_BEGIN */
/* the following are here to avoid exposing time64_config.h and
* other types in our public time64.h header
*/
#include "time64_config.h"
/* Not everyone has gm/localtime_r(), provide a replacement */
#ifdef HAS_LOCALTIME_R
# define LOCALTIME_R(clock, result) localtime_r(clock, result)
#else
# define LOCALTIME_R(clock, result) fake_localtime_r(clock, result)
#endif
#ifdef HAS_GMTIME_R
# define GMTIME_R(clock, result) gmtime_r(clock, result)
#else
# define GMTIME_R(clock, result) fake_gmtime_r(clock, result)
#endif
typedef int64_t Int64;
typedef time64_t Time64_T;
typedef int64_t Year;
#define TM tm
/* BIONIC_END */
/* Spec says except for stftime() and the _r() functions, these
all return static memory. Stabbings! */
static struct TM Static_Return_Date;
static char Static_Return_String[35];
static const int days_in_month[2][12] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
};
static const int julian_days_by_month[2][12] = {
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
};
static char const wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};
static char const mon_name[12][3] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
static const int length_of_year[2] = { 365, 366 };
/* Some numbers relating to the gregorian cycle */
static const Year years_in_gregorian_cycle = 400;
#define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1)
static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL;
/* Year range we can trust the time funcitons with */
#define MAX_SAFE_YEAR 2037
#define MIN_SAFE_YEAR 1971
/* 28 year Julian calendar cycle */
#define SOLAR_CYCLE_LENGTH 28
/* Year cycle from MAX_SAFE_YEAR down. */
static const int safe_years_high[SOLAR_CYCLE_LENGTH] = {
2016, 2017, 2018, 2019,
2020, 2021, 2022, 2023,
2024, 2025, 2026, 2027,
2028, 2029, 2030, 2031,
2032, 2033, 2034, 2035,
2036, 2037, 2010, 2011,
2012, 2013, 2014, 2015
};
/* Year cycle from MIN_SAFE_YEAR up */
static const int safe_years_low[SOLAR_CYCLE_LENGTH] = {
1996, 1997, 1998, 1971,
1972, 1973, 1974, 1975,
1976, 1977, 1978, 1979,
1980, 1981, 1982, 1983,
1984, 1985, 1986, 1987,
1988, 1989, 1990, 1991,
1992, 1993, 1994, 1995,
};
/* Let's assume people are going to be looking for dates in the future.
Let's provide some cheats so you can skip ahead.
This has a 4x speed boost when near 2008.
*/
/* Number of days since epoch on Jan 1st, 2008 GMT */
#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
#define CHEAT_YEARS 108
#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
#ifdef USE_SYSTEM_LOCALTIME
# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
(a) <= SYSTEM_LOCALTIME_MAX && \
(a) >= SYSTEM_LOCALTIME_MIN \
)
#else
# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
#endif
#ifdef USE_SYSTEM_GMTIME
# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
(a) <= SYSTEM_GMTIME_MAX && \
(a) >= SYSTEM_GMTIME_MIN \
)
#else
# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
#endif
/* Multi varadic macros are a C99 thing, alas */
#ifdef TIME_64_DEBUG
# define TRACE(format) (fprintf(stderr, format))
# define TRACE1(format, var1) (fprintf(stderr, format, var1))
# define TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
# define TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
#else
# define TRACE(format) ((void)0)
# define TRACE1(format, var1) ((void)0)
# define TRACE2(format, var1, var2) ((void)0)
# define TRACE3(format, var1, var2, var3) ((void)0)
#endif
static int is_exception_century(Year year)
{
int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
return(is_exception);
}
/* timegm() is not in the C or POSIX spec, but it is such a useful
extension I would be remiss in leaving it out. Also I need it
for localtime64()
*/
Time64_T timegm64(const struct TM *date) {
Time64_T days = 0;
Time64_T seconds = 0;
Year year;
Year orig_year = (Year)date->tm_year;
int cycles = 0;
if( orig_year > 100 ) {
cycles = (orig_year - 100) / 400;
orig_year -= cycles * 400;
days += (Time64_T)cycles * days_in_gregorian_cycle;
}
else if( orig_year < -300 ) {
cycles = (orig_year - 100) / 400;
orig_year -= cycles * 400;
days += (Time64_T)cycles * days_in_gregorian_cycle;
}
TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year);
if( orig_year > 70 ) {
year = 70;
while( year < orig_year ) {
days += length_of_year[IS_LEAP(year)];
year++;
}
}
else if ( orig_year < 70 ) {
year = 69;
do {
days -= length_of_year[IS_LEAP(year)];
year--;
} while( year >= orig_year );
}
days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon];
days += date->tm_mday - 1;
seconds = days * 60 * 60 * 24;
seconds += date->tm_hour * 60 * 60;
seconds += date->tm_min * 60;
seconds += date->tm_sec;
return(seconds);
}
#if !defined(NDEBUG)
static int check_tm(struct TM *tm)
{
/* Don't forget leap seconds */
assert(tm->tm_sec >= 0);
assert(tm->tm_sec <= 61);
assert(tm->tm_min >= 0);
assert(tm->tm_min <= 59);
assert(tm->tm_hour >= 0);
assert(tm->tm_hour <= 23);
assert(tm->tm_mday >= 1);
assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
assert(tm->tm_mon >= 0);
assert(tm->tm_mon <= 11);
assert(tm->tm_wday >= 0);
assert(tm->tm_wday <= 6);
assert(tm->tm_yday >= 0);
assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
#ifdef HAS_TM_TM_GMTOFF
assert(tm->tm_gmtoff >= -24 * 60 * 60);
assert(tm->tm_gmtoff <= 24 * 60 * 60);
#endif
return 1;
}
#endif
/* The exceptional centuries without leap years cause the cycle to
shift by 16
*/
static Year cycle_offset(Year year)
{
const Year start_year = 2000;
Year year_diff = year - start_year;
Year exceptions;
if( year > start_year )
year_diff--;
exceptions = year_diff / 100;
exceptions -= year_diff / 400;
TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
year, exceptions, year_diff);
return exceptions * 16;
}
/* For a given year after 2038, pick the latest possible matching
year in the 28 year calendar cycle.
A matching year...
1) Starts on the same day of the week.
2) Has the same leap year status.
This is so the calendars match up.
Also the previous year must match. When doing Jan 1st you might
wind up on Dec 31st the previous year when doing a -UTC time zone.
Finally, the next year must have the same start day of week. This
is for Dec 31st with a +UTC time zone.
It doesn't need the same leap year status since we only care about
January 1st.
*/
static int safe_year(const Year year)
{
int safe_year = 0;
Year year_cycle;
if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) {
return (int)year;
}
year_cycle = year + cycle_offset(year);
/* safe_years_low is off from safe_years_high by 8 years */
if( year < MIN_SAFE_YEAR )
year_cycle -= 8;
/* Change non-leap xx00 years to an equivalent */
if( is_exception_century(year) )
year_cycle += 11;
/* Also xx01 years, since the previous year will be wrong */
if( is_exception_century(year - 1) )
year_cycle += 17;
year_cycle %= SOLAR_CYCLE_LENGTH;
if( year_cycle < 0 )
year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
assert( year_cycle >= 0 );
assert( year_cycle < SOLAR_CYCLE_LENGTH );
if( year < MIN_SAFE_YEAR )
safe_year = safe_years_low[year_cycle];
else if( year > MAX_SAFE_YEAR )
safe_year = safe_years_high[year_cycle];
else
assert(0);
TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
year, year_cycle, safe_year);
assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR);
return safe_year;
}
static void copy_tm_to_TM(const struct tm *src, struct TM *dest) {
if( src == NULL ) {
memset(dest, 0, sizeof(*dest));
}
else {
# ifdef USE_TM64
dest->tm_sec = src->tm_sec;
dest->tm_min = src->tm_min;
dest->tm_hour = src->tm_hour;
dest->tm_mday = src->tm_mday;
dest->tm_mon = src->tm_mon;
dest->tm_year = (Year)src->tm_year;
dest->tm_wday = src->tm_wday;
dest->tm_yday = src->tm_yday;
dest->tm_isdst = src->tm_isdst;
# ifdef HAS_TM_TM_GMTOFF
dest->tm_gmtoff = src->tm_gmtoff;
# endif
# ifdef HAS_TM_TM_ZONE
dest->tm_zone = src->tm_zone;
# endif
# else
/* They're the same type */
memcpy(dest, src, sizeof(*dest));
# endif
}
}
static void copy_TM_to_tm(const struct TM *src, struct tm *dest) {
if( src == NULL ) {
memset(dest, 0, sizeof(*dest));
}
else {
# ifdef USE_TM64
dest->tm_sec = src->tm_sec;
dest->tm_min = src->tm_min;
dest->tm_hour = src->tm_hour;
dest->tm_mday = src->tm_mday;
dest->tm_mon = src->tm_mon;
dest->tm_year = (int)src->tm_year;
dest->tm_wday = src->tm_wday;
dest->tm_yday = src->tm_yday;
dest->tm_isdst = src->tm_isdst;
# ifdef HAS_TM_TM_GMTOFF
dest->tm_gmtoff = src->tm_gmtoff;
# endif
# ifdef HAS_TM_TM_ZONE
dest->tm_zone = src->tm_zone;
# endif
# else
/* They're the same type */
memcpy(dest, src, sizeof(*dest));
# endif
}
}
/* Simulate localtime_r() to the best of our ability */
struct tm * fake_localtime_r(const time_t *clock, struct tm *result) {
const struct tm *static_result = localtime(clock);
assert(result != NULL);
if( static_result == NULL ) {
memset(result, 0, sizeof(*result));
return NULL;
}
else {
memcpy(result, static_result, sizeof(*result));
return result;
}
}
/* Simulate gmtime_r() to the best of our ability */
struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) {
const struct tm *static_result = gmtime(clock);
assert(result != NULL);
if( static_result == NULL ) {
memset(result, 0, sizeof(*result));
return NULL;
}
else {
memcpy(result, static_result, sizeof(*result));
return result;
}
}
static Time64_T seconds_between_years(Year left_year, Year right_year) {
int increment = (left_year > right_year) ? 1 : -1;
Time64_T seconds = 0;
int cycles;
if( left_year > 2400 ) {
cycles = (left_year - 2400) / 400;
left_year -= cycles * 400;
seconds += cycles * seconds_in_gregorian_cycle;
}
else if( left_year < 1600 ) {
cycles = (left_year - 1600) / 400;
left_year += cycles * 400;
seconds += cycles * seconds_in_gregorian_cycle;
}
while( left_year != right_year ) {
seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24;
right_year += increment;
}
return seconds * increment;
}
/* This implementation violates mktime specification, according to which
tm_yday, tm_wday, and tm_isdst fields should be updated. This function
leaves input_date unmodified. Given that there were no bug reports, fixing
it might cause more troubles than just leaving it as it is.
*/
Time64_T mktime64(const struct TM *input_date) {
struct tm safe_date;
struct TM date;
Time64_T time;
Year year = input_date->tm_year + 1900;
if( MIN_SAFE_YEAR <= year && year <= MAX_SAFE_YEAR ) {
copy_TM_to_tm(input_date, &safe_date);
return (Time64_T)mktime(&safe_date);
}
/* Have to make the year safe in date else it won't fit in safe_date */
date = *input_date;
date.tm_year = safe_year(year) - 1900;
copy_TM_to_tm(&date, &safe_date);
time = (Time64_T)mktime(&safe_date);
time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900));
return time;
}
/* Because I think mktime() is a crappy name */
Time64_T timelocal64(const struct TM *date) {
return mktime64(date);
}
struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p)
{
int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
Time64_T v_tm_tday;
int leap;
Time64_T m;
Time64_T time = *in_time;
Year year = 70;
int cycles = 0;
assert(p != NULL);
/* Use the system gmtime() if time_t is small enough */
if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
time_t safe_time = *in_time;
struct tm safe_date;
GMTIME_R(&safe_time, &safe_date);
copy_tm_to_TM(&safe_date, p);
assert(check_tm(p));
return p;
}
#ifdef HAS_TM_TM_GMTOFF
p->tm_gmtoff = 0;
#endif
p->tm_isdst = 0;
#ifdef HAS_TM_TM_ZONE
p->tm_zone = "UTC";
#endif
v_tm_sec = (int)(time % 60);
time /= 60;
v_tm_min = (int)(time % 60);
time /= 60;
v_tm_hour = (int)(time % 24);
time /= 24;
v_tm_tday = time;
WRAP (v_tm_sec, v_tm_min, 60);
WRAP (v_tm_min, v_tm_hour, 60);
WRAP (v_tm_hour, v_tm_tday, 24);
v_tm_wday = (int)((v_tm_tday + 4) % 7);
if (v_tm_wday < 0)
v_tm_wday += 7;
m = v_tm_tday;
if (m >= CHEAT_DAYS) {
year = CHEAT_YEARS;
m -= CHEAT_DAYS;
}
if (m >= 0) {
/* Gregorian cycles, this is huge optimization for distant times */
cycles = (int)(m / (Time64_T) days_in_gregorian_cycle);
if( cycles ) {
m -= (cycles * (Time64_T) days_in_gregorian_cycle);
year += (cycles * years_in_gregorian_cycle);
}
/* Years */
leap = IS_LEAP (year);
while (m >= (Time64_T) length_of_year[leap]) {
m -= (Time64_T) length_of_year[leap];
year++;
leap = IS_LEAP (year);
}
/* Months */
v_tm_mon = 0;
while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
m -= (Time64_T) days_in_month[leap][v_tm_mon];
v_tm_mon++;
}
} else {
year--;
/* Gregorian cycles */
cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1);
if( cycles ) {
m -= (cycles * (Time64_T) days_in_gregorian_cycle);
year += (cycles * years_in_gregorian_cycle);
}
/* Years */
leap = IS_LEAP (year);
while (m < (Time64_T) -length_of_year[leap]) {
m += (Time64_T) length_of_year[leap];
year--;
leap = IS_LEAP (year);
}
/* Months */
v_tm_mon = 11;
while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
m += (Time64_T) days_in_month[leap][v_tm_mon];
v_tm_mon--;
}
m += (Time64_T) days_in_month[leap][v_tm_mon];
}
p->tm_year = year;
if( p->tm_year != year ) {
#ifdef EOVERFLOW
errno = EOVERFLOW;
#endif
return NULL;
}
/* At this point m is less than a year so casting to an int is safe */
p->tm_mday = (int) m + 1;
p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
p->tm_sec = v_tm_sec;
p->tm_min = v_tm_min;
p->tm_hour = v_tm_hour;
p->tm_mon = v_tm_mon;
p->tm_wday = v_tm_wday;
assert(check_tm(p));
return p;
}
struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm)
{
time_t safe_time;
struct tm safe_date;
struct TM gm_tm;
Year orig_year;
int month_diff;
assert(local_tm != NULL);
/* Use the system localtime() if time_t is small enough */
if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
safe_time = *time;
TRACE1("Using system localtime for %lld\n", *time);
LOCALTIME_R(&safe_time, &safe_date);
copy_tm_to_TM(&safe_date, local_tm);
assert(check_tm(local_tm));
return local_tm;
}
if( gmtime64_r(time, &gm_tm) == NULL ) {
TRACE1("gmtime64_r returned null for %lld\n", *time);
return NULL;
}
orig_year = gm_tm.tm_year;
if (gm_tm.tm_year > (2037 - 1900) ||
gm_tm.tm_year < (1970 - 1900)
)
{
TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
}
safe_time = timegm64(&gm_tm);
if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
return NULL;
}
copy_tm_to_TM(&safe_date, local_tm);
local_tm->tm_year = orig_year;
if( local_tm->tm_year != orig_year ) {
TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
(Year)local_tm->tm_year, (Year)orig_year);
#ifdef EOVERFLOW
errno = EOVERFLOW;
#endif
return NULL;
}
month_diff = local_tm->tm_mon - gm_tm.tm_mon;
/* When localtime is Dec 31st previous year and
gmtime is Jan 1st next year.
*/
if( month_diff == 11 ) {
local_tm->tm_year--;
}
/* When localtime is Jan 1st, next year and
gmtime is Dec 31st, previous year.
*/
if( month_diff == -11 ) {
local_tm->tm_year++;
}
/* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
in a non-leap xx00. There is one point in the cycle
we can't account for which the safe xx00 year is a leap
year. So we need to correct for Dec 31st comming out as
the 366th day of the year.
*/
if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
local_tm->tm_yday--;
assert(check_tm(local_tm));
return local_tm;
}
static int valid_tm_wday( const struct TM* date ) {
if( 0 <= date->tm_wday && date->tm_wday <= 6 )
return 1;
else
return 0;
}
static int valid_tm_mon( const struct TM* date ) {
if( 0 <= date->tm_mon && date->tm_mon <= 11 )
return 1;
else
return 0;
}
char *asctime64_r( const struct TM* date, char *result ) {
/* I figure everything else can be displayed, even hour 25, but if
these are out of range we walk off the name arrays */
if (!valid_tm_wday(date) || !valid_tm_mon(date)) {
return NULL;
}
/* Docs state this function does not support years beyond 9999. */
if (1900 + date->tm_year > 9999) {
return NULL;
}
/*
* The IBM docs for this function state that the result buffer can be
* assumed to be at least 26 bytes wide. The docs also state that this is
* only valid for years <= 9999, so we know this format string will not
* print more than that many characters.
*
* http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/asctimer.htm
*/
snprintf(result, 26, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[date->tm_wday],
mon_name[date->tm_mon],
date->tm_mday, date->tm_hour,
date->tm_min, date->tm_sec,
1900 + date->tm_year);
return result;
}
char *ctime64_r( const Time64_T* time, char* result ) {
struct TM date;
localtime64_r( time, &date );
return asctime64_r( &date, result );
}
/* Non-thread safe versions of the above */
struct TM *localtime64(const Time64_T *time) {
return localtime64_r(time, &Static_Return_Date);
}
struct TM *gmtime64(const Time64_T *time) {
return gmtime64_r(time, &Static_Return_Date);
}
char *asctime64( const struct TM* date ) {
return asctime64_r( date, Static_Return_String );
}
char *ctime64( const Time64_T* time ) {
return asctime64(localtime64(time));
}