9fb22a3ec4
This is quite a large patch because we haven't updated for some time, but the good news is that upstream is now thread-safe so a lot of our changes go away in this update and the remaining diff is a lot smaller. (Note that our whitespace still doesn't match upstream. I use diff -wub to compare. Upstream doesn't even really have a consistent style. New code seems to be two spaces, old code tabs.) From the intervening changelogs (eliding the changes that only affected the tools, which we don't use): 2014a: An uninitialized-storage bug in 'localtime' has been fixed. (Thanks to Logan Chien.) 2014b: 'zic' and 'localtime' no longer reject locations needing four transitions per year for the forseeable future. (Thanks to Andrew Main (Zefram).) 2014c: <None> 2014d: <None> 2014e: <None> 2014f: 'localtime', 'mktime', etc. now use much less stack space if ALL_STATE is defined. (Thanks to Elliott Hughes for reporting the problem.) Some lint has been removed when using GCC_DEBUG_FLAGS with GCC 4.9.0. 2014g: Unless NETBSD_INSPIRED is defined to 0, the tz library now supplies functions for creating and using objects that represent time zones. The new functions are tzalloc, tzfree, localtime_rz, mktime_z, and (if STD_INSPIRED is also defined) posix2time_z and time2posix_z. They are intended for performance: for example, localtime_rz (unlike localtime_r) is trivially thread-safe without locking. (Thanks to Christos Zoulas for proposing NetBSD-inspired functions, and to Alan Barrett and Jonathan Lennox for helping to debug the change.) If THREAD_SAFE is defined to 1, the tz library is now thread-safe. Although not needed for tz's own applications, which are single-threaded, this supports POSIX better if the tz library is used in multithreaded apps. Some crashes have been fixed when zdump or the tz library is given invalid or outlandish input. The tz library no longer mishandles leap seconds on platforms with unsigned time_t in time zones that lack ordinary transitions after 1970. The tz code now attempts to infer TM_GMTOFF and TM_ZONE if not already defined, to make it easier to configure on common platforms. Define NO_TM_GMTOFF and NO_TM_ZONE to suppress this. Unless the new macro UNINIT_TRAP is defined to 1, the tz code now assumes that reading uninitialized memory yields garbage values but does not cause other problems such as traps. If TM_GMTOFF is defined and UNINIT_TRAP is 0, mktime is now more likely to guess right for ambiguous time stamps near transitions where tm_isdst does not change. If HAVE_STRFTIME_L is defined to 1, the tz library now defines strftime_l for compatibility with recent versions of POSIX. Only the C locale is supported, though. HAVE_STRFTIME_L defaults to 1 on recent POSIX versions, and to 0 otherwise. tzselect -c now uses a hybrid distance measure that works better in Africa. (Thanks to Alan Barrett for noting the problem.) The C source code now ports to NetBSD when GCC_DEBUG_FLAGS is used, or when time_tz is defined. When HAVE_UTMPX_H is set the 'date' command now builds on systems whose <utmpx.h> file does not define WTMPX_FILE, and when setting the date it updates the wtmpx file if _PATH_WTMPX is defined. This affects GNU/Linux and similar systems. For easier maintenance later, some C code has been simplified, some lint has been removed, and the code has been tweaked so that plain 'make' is more likely to work. The C type 'bool' is now used for boolean values, instead of 'int'. The long-obsolete LOCALE_HOME code has been removed. The long-obsolete 'gtime' function has been removed. 2014h: The tz library's localtime and mktime functions now set tzname to a value appropriate for the requested time stamp, and zdump now uses this on platforms not defining TM_ZONE, fixing a 2014g regression. (Thanks to Tim Parenti for reporting the problem.) The tz library no longer sets tzname if localtime or mktime fails. An access to uninitalized data has been fixed. (Thanks to Jörg Richter for reporting the problem.) When THREAD_SAFE is defined, the code ports to the C11 memory model. A memory leak has been fixed if ALL_STATE and THREAD_SAFE are defined and two threads race to initialize data used by gmtime-like functions. (Thanks to Andy Heninger for reporting the problems.) 2014i: The time-related library functions now set errno on failure, and some crashes in the new tzalloc-related library functions have been fixed. (Thanks to Christos Zoulas for reporting most of these problems and for suggesting fixes.) If USG_COMPAT is defined and the requested time stamp is standard time, the tz library's localtime and mktime functions now set the extern variable timezone to a value appropriate for that time stamp; and similarly for ALTZONE, daylight saving time, and the altzone variable. This change is a companion to the tzname change in 2014h, and is designed to make timezone and altzone more compatible with tzname. The tz library's functions now set errno to EOVERFLOW if they fail because the result cannot be represented. ctime and ctime_r now return NULL and set errno when a time stamp is out of range, rather than having undefined behavior. Some bugs associated with the new 2014g functions have been fixed. This includes a bug that largely incapacitated the new functions time2posix_z and posix2time_z. (Thanks to Christos Zoulas.) It also includes some uses of uninitialized variables after tzalloc. The new code uses the standard type 'ssize_t', which the Makefile now gives porting advice about. 2014j: <None> 2015a: tzalloc now scrubs time zone abbreviations compatibly with the way that tzset always has, by replacing invalid bytes with '_' and by shortening too-long abbreviations. 2015b: Fix integer overflow bug in reference 'mktime' implementation. (Problem reported by Jörg Richter.) Allow -Dtime_tz=time_t compilations, and allow -Dtime_tz=... libraries to be used in the same executable as standard-library time_t functions. (Problems reported by Bradley White.) 2015c: <None> 2015d: <None> 2015e: <None> 2015f: <None> 2015g: localtime no longer mishandles America/Anchorage after 2037. (Thanks to Bradley White for reporting the bug.) On hosts with signed 32-bit time_t, localtime no longer mishandles Pacific/Fiji after 2038-01-16 14:00 UTC. The localtime module allows the variables 'timezone', 'daylight', and 'altzone' to be in common storage shared with other modules, and declares them in case the system <time.h> does not. (Problems reported by Kees Dekker.) On platforms with tm_zone, strftime.c now assumes it is not NULL. This simplifies the code and is consistent with zdump.c. (Problem reported by Christos Zoulas.) Change-Id: I9eb0a8323cb8bd9968fcfe612dc14f45aa3b59d2 |
||
---|---|---|
benchmarks | ||
build | ||
libc | ||
libdl | ||
libm | ||
libstdc++ | ||
linker | ||
tests | ||
tools | ||
.clang-format | ||
.gitignore | ||
Android.bp | ||
Android.mk | ||
CleanSpec.mk | ||
CPPLINT.cfg | ||
README.md |
Working on bionic
What are the big pieces of bionic?
libc/ --- libc.so, libc.a
The C library. Stuff like fopen(3)
and kill(2)
.
libm/ --- libm.so, libm.a
The math library. Traditionally Unix systems kept stuff like sin(3)
and
cos(3)
in a separate library to save space in the days before shared
libraries.
libdl/ --- libdl.so
The dynamic linker interface library. This is actually just a bunch of stubs
that the dynamic linker replaces with pointers to its own implementation at
runtime. This is where stuff like dlopen(3)
lives.
libstdc++/ --- libstdc++.so
The C++ ABI support functions. The C++ compiler doesn't know how to implement
thread-safe static initialization and the like, so it just calls functions that
are supplied by the system. Stuff like __cxa_guard_acquire
and
__cxa_pure_virtual
live here.
linker/ --- /system/bin/linker and /system/bin/linker64
The dynamic linker. When you run a dynamically-linked executable, its ELF file
has a DT_INTERP
entry that says "use the following program to start me". On
Android, that's either linker
or linker64
(depending on whether it's a
32-bit or 64-bit executable). It's responsible for loading the ELF executable
into memory and resolving references to symbols (so that when your code tries to
jump to fopen(3)
, say, it lands in the right place).
tests/ --- unit tests
The tests/
directory contains unit tests. Roughly arranged as one file per
publicly-exported header file.
benchmarks/ --- benchmarks
The benchmarks/
directory contains benchmarks.
What's in libc/?
libc/ arch-arm/ arch-arm64/ arch-common/ arch-mips/ arch-mips64/ arch-x86/ arch-x86_64/ # Each architecture has its own subdirectory for stuff that isn't shared # because it's architecture-specific. There will be a .mk file in here that # drags in all the architecture-specific files. bionic/ # Every architecture needs a handful of machine-specific assembler files. # They live here. include/ machine/ # The majority of header files are actually in libc/include/, but many # of them pull in a <machine/something.h> for things like limits, # endianness, and how floating point numbers are represented. Those # headers live here. string/ # Most architectures have a handful of optional assembler files # implementing optimized versions of various routines. The # functions are particular favorites. syscalls/ # The syscalls directories contain script-generated assembler files. # See 'Adding system calls' later. include/ # The public header files on everyone's include path. These are a mixture of # files written by us and files taken from BSD. kernel/ # The kernel uapi header files. These are scrubbed copies of the originals # in external/kernel-headers/. These files must not be edited directly. The # generate_uapi_headers.sh script should be used to go from a kernel tree to # external/kernel-headers/ --- this takes care of the architecture-specific # details. The update_all.py script should be used to regenerate bionic's # scrubbed headers from external/kernel-headers/. private/ # These are private header files meant for use within bionic itself. dns/ # Contains the DNS resolver (originates from NetBSD code). upstream-dlmalloc/ upstream-freebsd/ upstream-netbsd/ upstream-openbsd/ # These directories contain unmolested upstream source. Any time we can # just use a BSD implementation of something unmodified, we should. # The structure under these directories mimics the upstream tree, # but there's also... android/ include/ # This is where we keep the hacks necessary to build BSD source # in our world. The *-compat.h files are automatically included # using -include, but we also provide equivalents for missing # header/source files needed by the BSD implementation. bionic/ # This is the biggest mess. The C++ files are files we own, typically # because the Linux kernel interface is sufficiently different that we # can't use any of the BSD implementations. The C files are usually # legacy mess that needs to be sorted out, either by replacing it with # current upstream source in one of the upstream directories or by # switching the file to C++ and cleaning it up. stdio/ # These are legacy files of dubious provenance. We're working to clean # this mess up, and this directory should disappear. tools/ # Various tools used to maintain bionic. tzcode/ # A modified superset of the IANA tzcode. Most of the modifications relate # to Android's use of a single file (with corresponding index) to contain # time zone data. zoneinfo/ # Android-format time zone data. # See 'Updating tzdata' later.
Adding system calls
Adding a system call usually involves:
- Add entries to SYSCALLS.TXT. See SYSCALLS.TXT itself for documentation on the format.
- Run the gensyscalls.py script.
- Add constants (and perhaps types) to the appropriate header file. Note that you should check to see whether the constants are already in kernel uapi header files, in which case you just need to make sure that the appropriate POSIX header file in libc/include/ includes the relevant file or files.
- Add function declarations to the appropriate header file.
- Add at least basic tests. Even a test that deliberately supplies an invalid argument helps check that we're generating the right symbol and have the right declaration in the header file. (And strace(1) can confirm that the correct system call is being made.)
Updating kernel header files
As mentioned above, this is currently a two-step process:
- Use generate_uapi_headers.sh to go from a Linux source tree to appropriate contents for external/kernel-headers/.
- Run update_all.py to scrub those headers and import them into bionic.
Updating tzdata
This is fully automated:
- Run update-tzdata.py.
Verifying changes
If you make a change that is likely to have a wide effect on the tree (such as a
libc header change), you should run make checkbuild
. A regular make
will
not build the entire tree; just the minimum number of projects that are
required for the device. Tests, additional developer tools, and various other
modules will not be built. Note that make checkbuild
will not be complete
either, as make tests
covers a few additional modules, but generally speaking
make checkbuild
is enough.
Running the tests
The tests are all built from the tests/ directory.
Device tests
$ mma
$ adb remount
$ adb sync
$ adb shell /data/nativetest/bionic-unit-tests/bionic-unit-tests32
$ adb shell \
/data/nativetest/bionic-unit-tests-static/bionic-unit-tests-static32
# Only for 64-bit targets
$ adb shell /data/nativetest64/bionic-unit-tests/bionic-unit-tests64
$ adb shell \
/data/nativetest64/bionic-unit-tests-static/bionic-unit-tests-static64
Host tests
The host tests require that you have lunch
ed either an x86 or x86_64 target.
$ mma
$ mm bionic-unit-tests-run-on-host32
$ mm bionic-unit-tests-run-on-host64 # For 64-bit *targets* only.
Against glibc
As a way to check that our tests do in fact test the correct behavior (and not just the behavior we think is correct), it is possible to run the tests against the host's glibc. The executables are already in your path.
$ mma
$ bionic-unit-tests-glibc32
$ bionic-unit-tests-glibc64
Gathering test coverage
For either host or target coverage, you must first:
$ export NATIVE_COVERAGE=true
- Note that the build system is ignorant to this flag being toggled, i.e. if you change this flag, you will have to manually rebuild bionic.
- Set
bionic_coverage=true
inlibc/Android.mk
andlibm/Android.mk
.
Coverage from device tests
$ mma
$ adb sync
$ adb shell \
GCOV_PREFIX=/data/local/tmp/gcov \
GCOV_PREFIX_STRIP=`echo $ANDROID_BUILD_TOP | grep -o / | wc -l` \
/data/nativetest/bionic-unit-tests/bionic-unit-tests32
$ acov
acov
will pull all coverage information from the device, push it to the right
directories, run lcov
, and open the coverage report in your browser.
Coverage from host tests
First, build and run the host tests as usual (see above).
$ croot
$ lcov -c -d $ANDROID_PRODUCT_OUT -o coverage.info
$ genhtml -o covreport coverage.info # or lcov --list coverage.info
The coverage report is now available at covreport/index.html
.
Attaching GDB to the tests
Bionic's test runner will run each test in its own process by default to prevent tests failures from impacting other tests. This also has the added benefit of running them in parallel, so they are much faster.
However, this also makes it difficult to run the tests under GDB. To prevent
each test from being forked, run the tests with the flag --no-isolate
.
LP32 ABI bugs
This probably belongs in the NDK documentation rather than here, but these are the known ABI bugs in LP32:
-
time_t
is 32-bit. http://b/5819737 -
off_t
is 32-bit. There isoff64_t
, but no_FILE_OFFSET_BITS
support. Many of theoff64_t
functions are missing in older releases, and stdio uses 32-bit offsets, so there's no way to fully implement_FILE_OFFSET_BITS
. -
sigset_t
is too small on ARM and x86 (but correct on MIPS), so support for real-time signals is broken. http://b/5828899