platform_bionic/tests/signal_test.cpp
Elliott Hughes 7532b32627 Replace killpg.
Upstream's killpg is diverging further from glibc behavior, so let's just fork.

Bug: N/A
Test: ran tests
Change-Id: I70a3543018bc0a5c0bbf019ac527043b90568fda
2017-07-11 15:00:17 -07:00

537 lines
15 KiB
C++

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <signal.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <gtest/gtest.h>
#include "ScopedSignalHandler.h"
static size_t SIGNAL_MIN() {
return 1; // Signals start at 1 (SIGHUP), not 0.
}
static size_t SIGNAL_MAX() {
size_t result = SIGRTMAX;
#if defined(__BIONIC__) && !defined(__mips__) && !defined(__LP64__)
// 32-bit bionic's sigset_t is too small for ARM and x86: 32 bits instead of 64.
// This means you can't refer to any of the real-time signals.
// See http://b/3038348 and http://b/5828899.
result = 32;
#else
// Otherwise, C libraries should be perfectly capable of using their largest signal.
if (sizeof(sigset_t) * 8 < static_cast<size_t>(SIGRTMAX)) {
abort();
}
#endif
return result;
}
template <typename Fn>
static void TestSigSet1(Fn fn) {
// NULL sigset_t*.
sigset_t* set_ptr = NULL;
errno = 0;
ASSERT_EQ(-1, fn(set_ptr));
ASSERT_EQ(EINVAL, errno);
// Non-NULL.
sigset_t set;
errno = 0;
ASSERT_EQ(0, fn(&set));
ASSERT_EQ(0, errno);
}
template <typename Fn>
static void TestSigSet2(Fn fn) {
// NULL sigset_t*.
sigset_t* set_ptr = NULL;
errno = 0;
ASSERT_EQ(-1, fn(set_ptr, SIGSEGV));
ASSERT_EQ(EINVAL, errno);
sigset_t set;
sigemptyset(&set);
// Bad signal number: too small.
errno = 0;
ASSERT_EQ(-1, fn(&set, 0));
ASSERT_EQ(EINVAL, errno);
// Bad signal number: too high.
errno = 0;
ASSERT_EQ(-1, fn(&set, SIGNAL_MAX() + 1));
ASSERT_EQ(EINVAL, errno);
// Good signal numbers, low and high ends of range.
errno = 0;
ASSERT_EQ(0, fn(&set, SIGNAL_MIN()));
ASSERT_EQ(0, errno);
ASSERT_EQ(0, fn(&set, SIGNAL_MAX()));
ASSERT_EQ(0, errno);
}
TEST(signal, sigismember_invalid) {
TestSigSet2(sigismember);
}
TEST(signal, sigaddset_invalid) {
TestSigSet2(sigaddset);
}
TEST(signal, sigdelset_invalid) {
TestSigSet2(sigdelset);
}
TEST(signal, sigemptyset_invalid) {
TestSigSet1(sigemptyset);
}
TEST(signal, sigfillset_invalid) {
TestSigSet1(sigfillset);
}
TEST(signal, raise_invalid) {
errno = 0;
ASSERT_EQ(-1, raise(-1));
ASSERT_EQ(EINVAL, errno);
}
static void raise_in_signal_handler_helper(int signal_number) {
ASSERT_EQ(SIGALRM, signal_number);
static int count = 0;
if (++count == 1) {
raise(SIGALRM);
}
}
TEST(signal, raise_in_signal_handler) {
ScopedSignalHandler ssh(SIGALRM, raise_in_signal_handler_helper);
raise(SIGALRM);
}
static void HandleSIGALRM(int signal_number) {
ASSERT_EQ(SIGALRM, signal_number);
}
TEST(signal, sigwait) {
ScopedSignalHandler ssh(SIGALRM, HandleSIGALRM);
sigset_t wait_set;
sigemptyset(&wait_set);
sigaddset(&wait_set, SIGALRM);
alarm(1);
int received_signal;
errno = 0;
ASSERT_EQ(0, sigwait(&wait_set, &received_signal));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGALRM, received_signal);
}
static int g_sigsuspend_test_helper_call_count = 0;
static void SigSuspendTestHelper(int) {
++g_sigsuspend_test_helper_call_count;
}
TEST(signal, sigsuspend_sigpending) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
ScopedSignalHandler ssh(SIGALRM, SigSuspendTestHelper);
// There should be no pending signals.
sigset_t pending;
sigemptyset(&pending);
ASSERT_EQ(0, sigpending(&pending));
for (size_t i = SIGNAL_MIN(); i <= SIGNAL_MAX(); ++i) {
EXPECT_FALSE(sigismember(&pending, i)) << i;
}
// Raise SIGALRM and check our signal handler wasn't called.
raise(SIGALRM);
ASSERT_EQ(0, g_sigsuspend_test_helper_call_count);
// We should now have a pending SIGALRM but nothing else.
sigemptyset(&pending);
ASSERT_EQ(0, sigpending(&pending));
for (size_t i = SIGNAL_MIN(); i <= SIGNAL_MAX(); ++i) {
EXPECT_EQ((i == SIGALRM), sigismember(&pending, i));
}
// Use sigsuspend to block everything except SIGALRM...
sigset_t not_SIGALRM;
sigfillset(&not_SIGALRM);
sigdelset(&not_SIGALRM, SIGALRM);
ASSERT_EQ(-1, sigsuspend(&not_SIGALRM));
ASSERT_EQ(EINTR, errno);
// ...and check that we now receive our pending SIGALRM.
ASSERT_EQ(1, g_sigsuspend_test_helper_call_count);
// Restore the original set.
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}
static void EmptySignalHandler(int) {}
static void EmptySignalAction(int, siginfo_t*, void*) {}
TEST(signal, sigaction) {
// Both bionic and glibc set SA_RESTORER when talking to the kernel on arm,
// arm64, x86, and x86-64. The version of glibc we're using also doesn't
// define SA_RESTORER, but luckily it's the same value everywhere, and mips
// doesn't use the bit for anything.
static const unsigned sa_restorer = 0x4000000;
// See what's currently set for SIGALRM.
struct sigaction original_sa;
memset(&original_sa, 0, sizeof(original_sa));
ASSERT_EQ(0, sigaction(SIGALRM, NULL, &original_sa));
ASSERT_TRUE(original_sa.sa_handler == NULL);
ASSERT_TRUE(original_sa.sa_sigaction == NULL);
ASSERT_EQ(0U, original_sa.sa_flags & ~sa_restorer);
// Set a traditional sa_handler signal handler.
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sigaddset(&sa.sa_mask, SIGALRM);
sa.sa_flags = SA_ONSTACK;
sa.sa_handler = EmptySignalHandler;
ASSERT_EQ(0, sigaction(SIGALRM, &sa, NULL));
// Check that we can read it back.
memset(&sa, 0, sizeof(sa));
ASSERT_EQ(0, sigaction(SIGALRM, NULL, &sa));
ASSERT_TRUE(sa.sa_handler == EmptySignalHandler);
ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler);
ASSERT_EQ(static_cast<unsigned>(SA_ONSTACK), sa.sa_flags & ~sa_restorer);
// Set a new-style sa_sigaction signal handler.
memset(&sa, 0, sizeof(sa));
sigaddset(&sa.sa_mask, SIGALRM);
sa.sa_flags = SA_ONSTACK | SA_SIGINFO;
sa.sa_sigaction = EmptySignalAction;
ASSERT_EQ(0, sigaction(SIGALRM, &sa, NULL));
// Check that we can read it back.
memset(&sa, 0, sizeof(sa));
ASSERT_EQ(0, sigaction(SIGALRM, NULL, &sa));
ASSERT_TRUE(sa.sa_sigaction == EmptySignalAction);
ASSERT_TRUE((void*) sa.sa_sigaction == (void*) sa.sa_handler);
ASSERT_EQ(static_cast<unsigned>(SA_ONSTACK | SA_SIGINFO), sa.sa_flags & ~sa_restorer);
// Put everything back how it was.
ASSERT_EQ(0, sigaction(SIGALRM, &original_sa, NULL));
}
TEST(signal, sys_signame) {
#if defined(__BIONIC__)
ASSERT_TRUE(sys_signame[0] == NULL);
ASSERT_STREQ("HUP", sys_signame[SIGHUP]);
#else
GTEST_LOG_(INFO) << "This test does nothing.\n";
#endif
}
TEST(signal, sys_siglist) {
ASSERT_TRUE(sys_siglist[0] == NULL);
ASSERT_STREQ("Hangup", sys_siglist[SIGHUP]);
}
TEST(signal, limits) {
// This comes from the kernel.
ASSERT_EQ(32, __SIGRTMIN);
// We reserve a non-zero number at the bottom for ourselves.
ASSERT_GT(SIGRTMIN, __SIGRTMIN);
// MIPS has more signals than everyone else.
#if defined(__mips__)
ASSERT_EQ(128, __SIGRTMAX);
#else
ASSERT_EQ(64, __SIGRTMAX);
#endif
// We don't currently reserve any at the top.
ASSERT_EQ(SIGRTMAX, __SIGRTMAX);
}
static int g_sigqueue_signal_handler_call_count = 0;
static void SigqueueSignalHandler(int signum, siginfo_t* info, void*) {
ASSERT_EQ(SIGALRM, signum);
ASSERT_EQ(SIGALRM, info->si_signo);
ASSERT_EQ(SI_QUEUE, info->si_code);
ASSERT_EQ(1, info->si_value.sival_int);
++g_sigqueue_signal_handler_call_count;
}
TEST(signal, sigqueue) {
ScopedSignalHandler ssh(SIGALRM, SigqueueSignalHandler, SA_SIGINFO);
sigval_t sigval;
sigval.sival_int = 1;
errno = 0;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
ASSERT_EQ(0, errno);
ASSERT_EQ(1, g_sigqueue_signal_handler_call_count);
}
TEST(signal, sigwaitinfo) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
// Raise SIGALRM.
sigval_t sigval;
sigval.sival_int = 1;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
// Get pending SIGALRM.
siginfo_t info;
errno = 0;
ASSERT_EQ(SIGALRM, sigwaitinfo(&just_SIGALRM, &info));
ASSERT_EQ(0, errno);
ASSERT_EQ(SIGALRM, info.si_signo);
ASSERT_EQ(1, info.si_value.sival_int);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}
TEST(signal, sigtimedwait) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
// Raise SIGALRM.
sigval_t sigval;
sigval.sival_int = 1;
ASSERT_EQ(0, sigqueue(getpid(), SIGALRM, sigval));
// Get pending SIGALRM.
siginfo_t info;
struct timespec timeout;
timeout.tv_sec = 2;
timeout.tv_nsec = 0;
errno = 0;
ASSERT_EQ(SIGALRM, sigtimedwait(&just_SIGALRM, &info, &timeout));
ASSERT_EQ(0, errno);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}
static int64_t NanoTime() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<int64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec;
}
TEST(signal, sigtimedwait_timeout) {
// Block SIGALRM.
sigset_t just_SIGALRM;
sigemptyset(&just_SIGALRM);
sigaddset(&just_SIGALRM, SIGALRM);
sigset_t original_set;
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &just_SIGALRM, &original_set));
// Wait timeout.
int64_t start_time = NanoTime();
siginfo_t info;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 1000000;
errno = 0;
ASSERT_EQ(-1, sigtimedwait(&just_SIGALRM, &info, &timeout));
ASSERT_EQ(EAGAIN, errno);
ASSERT_GE(NanoTime() - start_time, 1000000);
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, &original_set, NULL));
}
#if defined(__BIONIC__)
TEST(signal, rt_tgsigqueueinfo) {
// Test whether rt_tgsigqueueinfo allows sending arbitrary si_code values to self.
// If this fails, your kernel needs commit 66dd34a to be backported.
static constexpr char error_msg[] =
"\nPlease ensure that the following kernel patch has been applied:\n"
"* https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=66dd34ad31e5963d72a700ec3f2449291d322921\n";
static siginfo received;
struct sigaction handler;
memset(&handler, 0, sizeof(handler));
handler.sa_sigaction = [](int, siginfo_t* siginfo, void*) { received = *siginfo; };
handler.sa_flags = SA_SIGINFO;
ASSERT_EQ(0, sigaction(SIGUSR1, &handler, nullptr));
siginfo sent;
memset(&sent, 0, sizeof(sent));
sent.si_code = SI_TKILL;
ASSERT_EQ(0, syscall(SYS_rt_tgsigqueueinfo, getpid(), gettid(), SIGUSR1, &sent))
<< "rt_tgsigqueueinfo failed: " << strerror(errno) << error_msg;
ASSERT_EQ(sent.si_code, received.si_code) << "rt_tgsigqueueinfo modified si_code, expected "
<< sent.si_code << ", received " << received.si_code
<< error_msg;
sent.si_code = SI_USER;
ASSERT_EQ(0, syscall(SYS_rt_tgsigqueueinfo, getpid(), gettid(), SIGUSR1, &sent))
<< "rt_tgsigqueueinfo failed: " << strerror(errno) << error_msg;
ASSERT_EQ(sent.si_code, received.si_code) << "rt_tgsigqueueinfo modified si_code, expected "
<< sent.si_code << ", received " << received.si_code
<< error_msg;
}
#if defined(__arm__) || defined(__aarch64__) || defined(__i386__) || defined(__x86_64__)
TEST(signal, sigset_size) {
// The setjmp implementations for ARM, AArch64, x86, and x86_64 assume that sigset_t can fit in a
// long. This is true because ARM and x86 have broken rt signal support, and AArch64 and x86_64
// both have a SIGRTMAX defined as 64.
static_assert(sizeof(sigset_t) <= sizeof(long), "sigset_t doesn't fit in a long");
}
#endif
#endif
TEST(signal, sigignore_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sigignore(99999));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigignore) {
errno = 0;
EXPECT_EQ(-1, sigignore(SIGKILL));
EXPECT_EQ(errno, EINVAL);
errno = 0;
EXPECT_EQ(-1, sigignore(SIGSTOP));
EXPECT_EQ(errno, EINVAL);
ScopedSignalHandler sigalrm{SIGALRM};
ASSERT_EQ(0, sigignore(SIGALRM));
struct sigaction sa;
ASSERT_EQ(0, sigaction(SIGALRM, nullptr, &sa));
EXPECT_EQ(SIG_IGN, sa.sa_handler);
}
TEST(signal, sighold_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sighold(99999));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigpause_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sigpause(99999));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigrelse_EINVAL) {
errno = 0;
ASSERT_EQ(-1, sigpause(99999));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sighold_sigpause_sigrelse) {
static int sigalrm_handler_call_count;
auto sigalrm_handler = [](int) { sigalrm_handler_call_count++; };
ScopedSignalHandler sigalrm{SIGALRM, sigalrm_handler};
ScopedSignalMask mask;
sigset_t set;
// sighold(SIGALRM) should add SIGALRM to the signal mask ...
ASSERT_EQ(0, sighold(SIGALRM));
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, 0, &set));
EXPECT_TRUE(sigismember(&set, SIGALRM));
// ... preventing our SIGALRM handler from running ...
raise(SIGALRM);
ASSERT_EQ(0, sigalrm_handler_call_count);
// ... until sigpause(SIGALRM) temporarily unblocks it.
ASSERT_EQ(-1, sigpause(SIGALRM));
ASSERT_EQ(EINTR, errno);
ASSERT_EQ(1, sigalrm_handler_call_count);
// But sigpause(SIGALRM) shouldn't permanently unblock SIGALRM.
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, 0, &set));
EXPECT_TRUE(sigismember(&set, SIGALRM));
ASSERT_EQ(0, sigrelse(SIGALRM));
ASSERT_EQ(0, sigprocmask(SIG_SETMASK, 0, &set));
EXPECT_FALSE(sigismember(&set, SIGALRM));
}
TEST(signal, sigset_EINVAL) {
errno = 0;
ASSERT_EQ(SIG_ERR, sigset(99999, SIG_DFL));
ASSERT_EQ(EINVAL, errno);
}
TEST(signal, sigset) {
auto sigalrm_handler = [](int) { };
ScopedSignalHandler sigalrm{SIGALRM, sigalrm_handler};
ScopedSignalMask mask;
// block SIGALRM so the next sigset(SIGARLM) call will return SIG_HOLD
sigset_t sigalrm_set;
sigemptyset(&sigalrm_set);
sigaddset(&sigalrm_set, SIGALRM);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, &sigalrm_set, nullptr));
sigset_t set;
ASSERT_EQ(SIG_HOLD, sigset(SIGALRM, sigalrm_handler));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_FALSE(sigismember(&set, SIGALRM));
ASSERT_EQ(sigalrm_handler, sigset(SIGALRM, SIG_IGN));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_FALSE(sigismember(&set, SIGALRM));
ASSERT_EQ(SIG_IGN, sigset(SIGALRM, SIG_DFL));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_FALSE(sigismember(&set, SIGALRM));
ASSERT_EQ(SIG_DFL, sigset(SIGALRM, SIG_HOLD));
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &set));
EXPECT_TRUE(sigismember(&set, SIGALRM));
}
TEST(signal, killpg_EINVAL) {
// POSIX leaves pgrp <= 1 undefined, but glibc fails with EINVAL for < 0
// and passes 0 through to kill(2).
errno = 0;
ASSERT_EQ(-1, killpg(-1, SIGKILL));
ASSERT_EQ(EINVAL, errno);
}