platform_bionic/libc/bionic/malloc_debug_leak.cpp
Christopher Ferris 3a40a0000a Do not hold hash table lock while backtracing.
There is a deadlock if holding the hash table lock while trying to do
a backtrace. Change the code so that the hash table lock is only held
while actually modifying either g_hash_table, or while modifying an
entry from g_hash_table.

Bug: 22423683
(cherry picked from commit 9fee99b060)

Change-Id: I72173bfe6f824ceaceea625c24e7851b87467135
2015-07-13 13:18:31 -07:00

525 lines
16 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <arpa/inet.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/system_properties.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>
#include <unwind.h>
#include "debug_stacktrace.h"
#include "malloc_debug_backtrace.h"
#include "malloc_debug_common.h"
#include "malloc_debug_disable.h"
#include "private/bionic_macros.h"
#include "private/libc_logging.h"
#include "private/ScopedPthreadMutexLocker.h"
extern int gMallocLeakZygoteChild;
extern HashTable* g_hash_table;
extern const MallocDebug* g_malloc_dispatch;
// =============================================================================
// stack trace functions
// =============================================================================
#define GUARD 0x48151642
#define DEBUG 0
// =============================================================================
// Structures
// =============================================================================
struct AllocationEntry {
HashEntry* entry;
uint32_t guard;
} __attribute__((aligned(MALLOC_ALIGNMENT)));
static inline AllocationEntry* to_header(void* mem) {
return reinterpret_cast<AllocationEntry*>(mem) - 1;
}
static inline const AllocationEntry* const_to_header(const void* mem) {
return reinterpret_cast<const AllocationEntry*>(mem) - 1;
}
// =============================================================================
// Hash Table functions
// =============================================================================
static uint32_t get_hash(uintptr_t* backtrace, size_t numEntries) {
if (backtrace == NULL) return 0;
int hash = 0;
size_t i;
for (i = 0 ; i < numEntries ; i++) {
hash = (hash * 33) + (backtrace[i] >> 2);
}
return hash;
}
static HashEntry* find_entry(HashTable* table, int slot,
uintptr_t* backtrace, size_t numEntries, size_t size) {
HashEntry* entry = table->slots[slot];
while (entry != NULL) {
//debug_log("backtrace: %p, entry: %p entry->backtrace: %p\n",
// backtrace, entry, (entry != NULL) ? entry->backtrace : NULL);
/*
* See if the entry matches exactly. We compare the "size" field,
* including the flag bits.
*/
if (entry->size == size && entry->numEntries == numEntries &&
!memcmp(backtrace, entry->backtrace, numEntries * sizeof(uintptr_t))) {
return entry;
}
entry = entry->next;
}
return NULL;
}
static HashEntry* record_backtrace(uintptr_t* backtrace, size_t numEntries, size_t size) {
size_t hash = get_hash(backtrace, numEntries);
size_t slot = hash % HASHTABLE_SIZE;
if (size & SIZE_FLAG_MASK) {
debug_log("malloc_debug: allocation %zx exceeds bit width\n", size);
abort();
}
if (gMallocLeakZygoteChild) {
size |= SIZE_FLAG_ZYGOTE_CHILD;
}
// Keep the lock held for as little time as possible to prevent deadlocks.
ScopedPthreadMutexLocker locker(&g_hash_table->lock);
HashEntry* entry = find_entry(g_hash_table, slot, backtrace, numEntries, size);
if (entry != NULL) {
entry->allocations++;
} else {
// create a new entry
entry = static_cast<HashEntry*>(g_malloc_dispatch->malloc(sizeof(HashEntry) + numEntries*sizeof(uintptr_t)));
if (!entry) {
return NULL;
}
entry->allocations = 1;
entry->slot = slot;
entry->prev = NULL;
entry->next = g_hash_table->slots[slot];
entry->numEntries = numEntries;
entry->size = size;
memcpy(entry->backtrace, backtrace, numEntries * sizeof(uintptr_t));
g_hash_table->slots[slot] = entry;
if (entry->next != NULL) {
entry->next->prev = entry;
}
// we just added an entry, increase the size of the hashtable
g_hash_table->count++;
}
return entry;
}
static int is_valid_entry(HashEntry* entry) {
if (entry != NULL) {
for (size_t i = 0; i < HASHTABLE_SIZE; ++i) {
HashEntry* e1 = g_hash_table->slots[i];
while (e1 != NULL) {
if (e1 == entry) {
return 1;
}
e1 = e1->next;
}
}
}
return 0;
}
static void remove_entry(HashEntry* entry) {
HashEntry* prev = entry->prev;
HashEntry* next = entry->next;
if (prev != NULL) entry->prev->next = next;
if (next != NULL) entry->next->prev = prev;
if (prev == NULL) {
// we are the head of the list. set the head to be next
g_hash_table->slots[entry->slot] = entry->next;
}
// we just removed and entry, decrease the size of the hashtable
g_hash_table->count--;
}
// =============================================================================
// malloc fill functions
// =============================================================================
#define CHK_FILL_FREE 0xef
#define CHK_SENTINEL_VALUE 0xeb
extern "C" void* fill_calloc(size_t n_elements, size_t elem_size) {
return g_malloc_dispatch->calloc(n_elements, elem_size);
}
extern "C" void* fill_malloc(size_t bytes) {
void* buffer = g_malloc_dispatch->malloc(bytes);
if (buffer) {
memset(buffer, CHK_SENTINEL_VALUE, bytes);
}
return buffer;
}
extern "C" void fill_free(void* mem) {
size_t bytes = g_malloc_dispatch->malloc_usable_size(mem);
memset(mem, CHK_FILL_FREE, bytes);
g_malloc_dispatch->free(mem);
}
extern "C" void* fill_realloc(void* mem, size_t bytes) {
size_t oldSize = g_malloc_dispatch->malloc_usable_size(mem);
void* newMem = g_malloc_dispatch->realloc(mem, bytes);
if (newMem) {
// If this is larger than before, fill the extra with our pattern.
size_t newSize = g_malloc_dispatch->malloc_usable_size(newMem);
if (newSize > oldSize) {
memset(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(newMem)+oldSize), CHK_FILL_FREE, newSize-oldSize);
}
}
return newMem;
}
extern "C" void* fill_memalign(size_t alignment, size_t bytes) {
void* buffer = g_malloc_dispatch->memalign(alignment, bytes);
if (buffer) {
memset(buffer, CHK_SENTINEL_VALUE, bytes);
}
return buffer;
}
extern "C" size_t fill_malloc_usable_size(const void* mem) {
// Since we didn't allocate extra bytes before or after, we can
// report the normal usable size here.
return g_malloc_dispatch->malloc_usable_size(mem);
}
extern "C" struct mallinfo fill_mallinfo() {
return g_malloc_dispatch->mallinfo();
}
extern "C" int fill_posix_memalign(void** memptr, size_t alignment, size_t size) {
if (!powerof2(alignment)) {
return EINVAL;
}
int saved_errno = errno;
*memptr = fill_memalign(alignment, size);
errno = saved_errno;
return (*memptr != NULL) ? 0 : ENOMEM;
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
extern "C" void* fill_pvalloc(size_t bytes) {
size_t pagesize = getpagesize();
size_t size = BIONIC_ALIGN(bytes, pagesize);
if (size < bytes) { // Overflow
return NULL;
}
return fill_memalign(pagesize, size);
}
extern "C" void* fill_valloc(size_t size) {
return fill_memalign(getpagesize(), size);
}
#endif
// =============================================================================
// malloc leak functions
// =============================================================================
static uint32_t MEMALIGN_GUARD = 0xA1A41520;
extern "C" void* leak_malloc(size_t bytes) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->malloc(bytes);
}
// allocate enough space infront of the allocation to store the pointer for
// the alloc structure. This will making free'ing the structer really fast!
// 1. allocate enough memory and include our header
// 2. set the base pointer to be right after our header
size_t size = bytes + sizeof(AllocationEntry);
if (size < bytes) { // Overflow.
errno = ENOMEM;
return NULL;
}
void* base = g_malloc_dispatch->malloc(size);
if (base != NULL) {
uintptr_t backtrace[BACKTRACE_SIZE];
size_t numEntries = GET_BACKTRACE(backtrace, BACKTRACE_SIZE);
AllocationEntry* header = reinterpret_cast<AllocationEntry*>(base);
header->entry = record_backtrace(backtrace, numEntries, bytes);
header->guard = GUARD;
// now increment base to point to after our header.
// this should just work since our header is 8 bytes.
base = reinterpret_cast<AllocationEntry*>(base) + 1;
}
return base;
}
extern "C" void leak_free(void* mem) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->free(mem);
}
if (mem == NULL) {
return;
}
// check the guard to make sure it is valid
AllocationEntry* header = to_header(mem);
if (header->guard != GUARD) {
// could be a memaligned block
if (header->guard == MEMALIGN_GUARD) {
// For memaligned blocks, header->entry points to the memory
// allocated through leak_malloc.
header = to_header(header->entry);
}
}
ScopedPthreadMutexLocker locker(&g_hash_table->lock);
if (header->guard == GUARD || is_valid_entry(header->entry)) {
// decrement the allocations
HashEntry* entry = header->entry;
entry->allocations--;
if (entry->allocations <= 0) {
remove_entry(entry);
g_malloc_dispatch->free(entry);
}
// now free the memory!
g_malloc_dispatch->free(header);
} else {
debug_log("WARNING bad header guard: '0x%x'! and invalid entry: %p\n",
header->guard, header->entry);
}
}
extern "C" void* leak_calloc(size_t n_elements, size_t elem_size) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->calloc(n_elements, elem_size);
}
// Fail on overflow - just to be safe even though this code runs only
// within the debugging C library, not the production one.
if (n_elements && SIZE_MAX / n_elements < elem_size) {
errno = ENOMEM;
return NULL;
}
size_t size = n_elements * elem_size;
void* ptr = leak_malloc(size);
if (ptr != NULL) {
memset(ptr, 0, size);
}
return ptr;
}
extern "C" size_t leak_malloc_usable_size(const void* mem) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->malloc_usable_size(mem);
}
if (mem == NULL) {
return 0;
}
// Check the guard to make sure it is valid.
const AllocationEntry* header = const_to_header(mem);
if (header->guard == MEMALIGN_GUARD) {
// If this is a memalign'd pointer, then grab the header from
// entry.
header = const_to_header(header->entry);
} else if (header->guard != GUARD) {
debug_log("WARNING bad header guard: '0x%x'! and invalid entry: %p\n",
header->guard, header->entry);
return 0;
}
size_t ret = g_malloc_dispatch->malloc_usable_size(header);
if (ret != 0) {
// The usable area starts at 'mem' and stops at 'header+ret'.
return reinterpret_cast<uintptr_t>(header) + ret - reinterpret_cast<uintptr_t>(mem);
}
return 0;
}
extern "C" void* leak_realloc(void* oldMem, size_t bytes) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->realloc(oldMem, bytes);
}
if (oldMem == NULL) {
return leak_malloc(bytes);
}
void* newMem = NULL;
AllocationEntry* header = to_header(oldMem);
if (header->guard == MEMALIGN_GUARD) {
// Get the real header.
header = to_header(header->entry);
} else if (header->guard != GUARD) {
debug_log("WARNING bad header guard: '0x%x'! and invalid entry: %p\n",
header->guard, header->entry);
errno = ENOMEM;
return NULL;
}
newMem = leak_malloc(bytes);
if (newMem != NULL) {
size_t oldSize = leak_malloc_usable_size(oldMem);
size_t copySize = (oldSize <= bytes) ? oldSize : bytes;
memcpy(newMem, oldMem, copySize);
leak_free(oldMem);
}
return newMem;
}
extern "C" void* leak_memalign(size_t alignment, size_t bytes) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->memalign(alignment, bytes);
}
// we can just use malloc
if (alignment <= MALLOC_ALIGNMENT) {
return leak_malloc(bytes);
}
// need to make sure it's a power of two
if (!powerof2(alignment)) {
alignment = BIONIC_ROUND_UP_POWER_OF_2(alignment);
}
// here, alignment is at least MALLOC_ALIGNMENT<<1 bytes
// we will align by at least MALLOC_ALIGNMENT bytes
// and at most alignment-MALLOC_ALIGNMENT bytes
size_t size = (alignment-MALLOC_ALIGNMENT) + bytes;
if (size < bytes) { // Overflow.
return NULL;
}
void* base = leak_malloc(size);
if (base != NULL) {
uintptr_t ptr = reinterpret_cast<uintptr_t>(base);
if ((ptr % alignment) == 0) {
return base;
}
// align the pointer
ptr += ((-ptr) % alignment);
// Already allocated enough space for the header. This assumes
// that the malloc alignment is at least 8, otherwise, this is
// not guaranteed to have the space for the header.
AllocationEntry* header = to_header(reinterpret_cast<void*>(ptr));
header->guard = MEMALIGN_GUARD;
header->entry = reinterpret_cast<HashEntry*>(base);
return reinterpret_cast<void*>(ptr);
}
return base;
}
extern "C" struct mallinfo leak_mallinfo() {
return g_malloc_dispatch->mallinfo();
}
extern "C" int leak_posix_memalign(void** memptr, size_t alignment, size_t size) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->posix_memalign(memptr, alignment, size);
}
if (!powerof2(alignment)) {
return EINVAL;
}
int saved_errno = errno;
*memptr = leak_memalign(alignment, size);
errno = saved_errno;
return (*memptr != NULL) ? 0 : ENOMEM;
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
extern "C" void* leak_pvalloc(size_t bytes) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->pvalloc(bytes);
}
size_t pagesize = getpagesize();
size_t size = BIONIC_ALIGN(bytes, pagesize);
if (size < bytes) { // Overflow
return NULL;
}
return leak_memalign(pagesize, size);
}
extern "C" void* leak_valloc(size_t size) {
if (DebugCallsDisabled()) {
return g_malloc_dispatch->valloc(size);
}
return leak_memalign(getpagesize(), size);
}
#endif