platform_bionic/libc/bionic/system_properties.cpp
Christopher Ferris 7a3681e5b6 Move libc_log code into libasync_safe.
This library is used by a number of different libraries in the system.
Make it easy for platform libraries to use this library and create
an actual exported include file.

Change the names of the functions to reflect the new name of the library.

Run clang_format on the async_safe_log.cpp file since the formatting is
all over the place.

Bug: 31919199

Test: Compiled for angler/bullhead, and booted.
Test: Ran bionic unit tests.
Test: Ran the malloc debug tests.
Change-Id: I8071bf690c17b0ea3bc8dc5749cdd5b6ad58478a
2017-05-03 08:50:43 -07:00

1472 lines
43 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <new>
#include <linux/xattr.h>
#include <netinet/in.h>
#include <sys/mman.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/un.h>
#include <sys/xattr.h>
#define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_
#include <sys/_system_properties.h>
#include <sys/system_properties.h>
#include <async_safe/log.h>
#include "private/ErrnoRestorer.h"
#include "private/bionic_futex.h"
#include "private/bionic_lock.h"
#include "private/bionic_macros.h"
#include "private/bionic_sdk_version.h"
static constexpr int PROP_FILENAME_MAX = 1024;
static constexpr uint32_t PROP_AREA_MAGIC = 0x504f5250;
static constexpr uint32_t PROP_AREA_VERSION = 0xfc6ed0ab;
static constexpr size_t PA_SIZE = 128 * 1024;
#define SERIAL_DIRTY(serial) ((serial)&1)
#define SERIAL_VALUE_LEN(serial) ((serial) >> 24)
static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME;
static const char* kServiceVersionPropertyName = "ro.property_service.version";
/*
* Properties are stored in a hybrid trie/binary tree structure.
* Each property's name is delimited at '.' characters, and the tokens are put
* into a trie structure. Siblings at each level of the trie are stored in a
* binary tree. For instance, "ro.secure"="1" could be stored as follows:
*
* +-----+ children +----+ children +--------+
* | |-------------->| ro |-------------->| secure |
* +-----+ +----+ +--------+
* / \ / |
* left / \ right left / | prop +===========+
* v v v +-------->| ro.secure |
* +-----+ +-----+ +-----+ +-----------+
* | net | | sys | | com | | 1 |
* +-----+ +-----+ +-----+ +===========+
*/
// Represents a node in the trie.
struct prop_bt {
uint32_t namelen;
// The property trie is updated only by the init process (single threaded) which provides
// property service. And it can be read by multiple threads at the same time.
// As the property trie is not protected by locks, we use atomic_uint_least32_t types for the
// left, right, children "pointers" in the trie node. To make sure readers who see the
// change of "pointers" can also notice the change of prop_bt structure contents pointed by
// the "pointers", we always use release-consume ordering pair when accessing these "pointers".
// prop "points" to prop_info structure if there is a propery associated with the trie node.
// Its situation is similar to the left, right, children "pointers". So we use
// atomic_uint_least32_t and release-consume ordering to protect it as well.
// We should also avoid rereading these fields redundantly, since not
// all processor implementations ensure that multiple loads from the
// same field are carried out in the right order.
atomic_uint_least32_t prop;
atomic_uint_least32_t left;
atomic_uint_least32_t right;
atomic_uint_least32_t children;
char name[0];
prop_bt(const char* name, const uint32_t name_length) {
this->namelen = name_length;
memcpy(this->name, name, name_length);
this->name[name_length] = '\0';
}
private:
DISALLOW_COPY_AND_ASSIGN(prop_bt);
};
class prop_area {
public:
prop_area(const uint32_t magic, const uint32_t version) : magic_(magic), version_(version) {
atomic_init(&serial_, 0);
memset(reserved_, 0, sizeof(reserved_));
// Allocate enough space for the root node.
bytes_used_ = sizeof(prop_bt);
}
const prop_info* find(const char* name);
bool add(const char* name, unsigned int namelen, const char* value, unsigned int valuelen);
bool foreach (void (*propfn)(const prop_info* pi, void* cookie), void* cookie);
atomic_uint_least32_t* serial() {
return &serial_;
}
uint32_t magic() const {
return magic_;
}
uint32_t version() const {
return version_;
}
private:
void* allocate_obj(const size_t size, uint_least32_t* const off);
prop_bt* new_prop_bt(const char* name, uint32_t namelen, uint_least32_t* const off);
prop_info* new_prop_info(const char* name, uint32_t namelen, const char* value, uint32_t valuelen,
uint_least32_t* const off);
void* to_prop_obj(uint_least32_t off);
prop_bt* to_prop_bt(atomic_uint_least32_t* off_p);
prop_info* to_prop_info(atomic_uint_least32_t* off_p);
prop_bt* root_node();
prop_bt* find_prop_bt(prop_bt* const bt, const char* name, uint32_t namelen, bool alloc_if_needed);
const prop_info* find_property(prop_bt* const trie, const char* name, uint32_t namelen,
const char* value, uint32_t valuelen, bool alloc_if_needed);
bool foreach_property(prop_bt* const trie, void (*propfn)(const prop_info* pi, void* cookie),
void* cookie);
uint32_t bytes_used_;
atomic_uint_least32_t serial_;
uint32_t magic_;
uint32_t version_;
uint32_t reserved_[28];
char data_[0];
DISALLOW_COPY_AND_ASSIGN(prop_area);
};
struct prop_info {
atomic_uint_least32_t serial;
// we need to keep this buffer around because the property
// value can be modified whereas name is constant.
char value[PROP_VALUE_MAX];
char name[0];
prop_info(const char* name, uint32_t namelen, const char* value, uint32_t valuelen) {
memcpy(this->name, name, namelen);
this->name[namelen] = '\0';
atomic_init(&this->serial, valuelen << 24);
memcpy(this->value, value, valuelen);
this->value[valuelen] = '\0';
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(prop_info);
};
// This is public because it was exposed in the NDK. As of 2017-01, ~60 apps reference this symbol.
prop_area* __system_property_area__ = nullptr;
static char property_filename[PROP_FILENAME_MAX] = PROP_FILENAME;
static size_t pa_data_size;
static size_t pa_size;
static bool initialized = false;
static prop_area* map_prop_area_rw(const char* filename, const char* context,
bool* fsetxattr_failed) {
/* dev is a tmpfs that we can use to carve a shared workspace
* out of, so let's do that...
*/
const int fd = open(filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC | O_EXCL, 0444);
if (fd < 0) {
if (errno == EACCES) {
/* for consistency with the case where the process has already
* mapped the page in and segfaults when trying to write to it
*/
abort();
}
return nullptr;
}
if (context) {
if (fsetxattr(fd, XATTR_NAME_SELINUX, context, strlen(context) + 1, 0) != 0) {
async_safe_format_log(ANDROID_LOG_ERROR, "libc",
"fsetxattr failed to set context (%s) for \"%s\"", context, filename);
/*
* fsetxattr() will fail during system properties tests due to selinux policy.
* We do not want to create a custom policy for the tester, so we will continue in
* this function but set a flag that an error has occurred.
* Init, which is the only daemon that should ever call this function will abort
* when this error occurs.
* Otherwise, the tester will ignore it and continue, albeit without any selinux
* property separation.
*/
if (fsetxattr_failed) {
*fsetxattr_failed = true;
}
}
}
if (ftruncate(fd, PA_SIZE) < 0) {
close(fd);
return nullptr;
}
pa_size = PA_SIZE;
pa_data_size = pa_size - sizeof(prop_area);
void* const memory_area = mmap(nullptr, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (memory_area == MAP_FAILED) {
close(fd);
return nullptr;
}
prop_area* pa = new (memory_area) prop_area(PROP_AREA_MAGIC, PROP_AREA_VERSION);
close(fd);
return pa;
}
static prop_area* map_fd_ro(const int fd) {
struct stat fd_stat;
if (fstat(fd, &fd_stat) < 0) {
return nullptr;
}
if ((fd_stat.st_uid != 0) || (fd_stat.st_gid != 0) ||
((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0) ||
(fd_stat.st_size < static_cast<off_t>(sizeof(prop_area)))) {
return nullptr;
}
pa_size = fd_stat.st_size;
pa_data_size = pa_size - sizeof(prop_area);
void* const map_result = mmap(nullptr, pa_size, PROT_READ, MAP_SHARED, fd, 0);
if (map_result == MAP_FAILED) {
return nullptr;
}
prop_area* pa = reinterpret_cast<prop_area*>(map_result);
if ((pa->magic() != PROP_AREA_MAGIC) || (pa->version() != PROP_AREA_VERSION)) {
munmap(pa, pa_size);
return nullptr;
}
return pa;
}
static prop_area* map_prop_area(const char* filename) {
int fd = open(filename, O_CLOEXEC | O_NOFOLLOW | O_RDONLY);
if (fd == -1) return nullptr;
prop_area* map_result = map_fd_ro(fd);
close(fd);
return map_result;
}
void* prop_area::allocate_obj(const size_t size, uint_least32_t* const off) {
const size_t aligned = BIONIC_ALIGN(size, sizeof(uint_least32_t));
if (bytes_used_ + aligned > pa_data_size) {
return nullptr;
}
*off = bytes_used_;
bytes_used_ += aligned;
return data_ + *off;
}
prop_bt* prop_area::new_prop_bt(const char* name, uint32_t namelen, uint_least32_t* const off) {
uint_least32_t new_offset;
void* const p = allocate_obj(sizeof(prop_bt) + namelen + 1, &new_offset);
if (p != nullptr) {
prop_bt* bt = new (p) prop_bt(name, namelen);
*off = new_offset;
return bt;
}
return nullptr;
}
prop_info* prop_area::new_prop_info(const char* name, uint32_t namelen, const char* value,
uint32_t valuelen, uint_least32_t* const off) {
uint_least32_t new_offset;
void* const p = allocate_obj(sizeof(prop_info) + namelen + 1, &new_offset);
if (p != nullptr) {
prop_info* info = new (p) prop_info(name, namelen, value, valuelen);
*off = new_offset;
return info;
}
return nullptr;
}
void* prop_area::to_prop_obj(uint_least32_t off) {
if (off > pa_data_size) return nullptr;
return (data_ + off);
}
inline prop_bt* prop_area::to_prop_bt(atomic_uint_least32_t* off_p) {
uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume);
return reinterpret_cast<prop_bt*>(to_prop_obj(off));
}
inline prop_info* prop_area::to_prop_info(atomic_uint_least32_t* off_p) {
uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume);
return reinterpret_cast<prop_info*>(to_prop_obj(off));
}
inline prop_bt* prop_area::root_node() {
return reinterpret_cast<prop_bt*>(to_prop_obj(0));
}
static int cmp_prop_name(const char* one, uint32_t one_len, const char* two, uint32_t two_len) {
if (one_len < two_len)
return -1;
else if (one_len > two_len)
return 1;
else
return strncmp(one, two, one_len);
}
prop_bt* prop_area::find_prop_bt(prop_bt* const bt, const char* name, uint32_t namelen,
bool alloc_if_needed) {
prop_bt* current = bt;
while (true) {
if (!current) {
return nullptr;
}
const int ret = cmp_prop_name(name, namelen, current->name, current->namelen);
if (ret == 0) {
return current;
}
if (ret < 0) {
uint_least32_t left_offset = atomic_load_explicit(&current->left, memory_order_relaxed);
if (left_offset != 0) {
current = to_prop_bt(&current->left);
} else {
if (!alloc_if_needed) {
return nullptr;
}
uint_least32_t new_offset;
prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset);
if (new_bt) {
atomic_store_explicit(&current->left, new_offset, memory_order_release);
}
return new_bt;
}
} else {
uint_least32_t right_offset = atomic_load_explicit(&current->right, memory_order_relaxed);
if (right_offset != 0) {
current = to_prop_bt(&current->right);
} else {
if (!alloc_if_needed) {
return nullptr;
}
uint_least32_t new_offset;
prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset);
if (new_bt) {
atomic_store_explicit(&current->right, new_offset, memory_order_release);
}
return new_bt;
}
}
}
}
const prop_info* prop_area::find_property(prop_bt* const trie, const char* name, uint32_t namelen,
const char* value, uint32_t valuelen,
bool alloc_if_needed) {
if (!trie) return nullptr;
const char* remaining_name = name;
prop_bt* current = trie;
while (true) {
const char* sep = strchr(remaining_name, '.');
const bool want_subtree = (sep != nullptr);
const uint32_t substr_size = (want_subtree) ? sep - remaining_name : strlen(remaining_name);
if (!substr_size) {
return nullptr;
}
prop_bt* root = nullptr;
uint_least32_t children_offset = atomic_load_explicit(&current->children, memory_order_relaxed);
if (children_offset != 0) {
root = to_prop_bt(&current->children);
} else if (alloc_if_needed) {
uint_least32_t new_offset;
root = new_prop_bt(remaining_name, substr_size, &new_offset);
if (root) {
atomic_store_explicit(&current->children, new_offset, memory_order_release);
}
}
if (!root) {
return nullptr;
}
current = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed);
if (!current) {
return nullptr;
}
if (!want_subtree) break;
remaining_name = sep + 1;
}
uint_least32_t prop_offset = atomic_load_explicit(&current->prop, memory_order_relaxed);
if (prop_offset != 0) {
return to_prop_info(&current->prop);
} else if (alloc_if_needed) {
uint_least32_t new_offset;
prop_info* new_info = new_prop_info(name, namelen, value, valuelen, &new_offset);
if (new_info) {
atomic_store_explicit(&current->prop, new_offset, memory_order_release);
}
return new_info;
} else {
return nullptr;
}
}
class PropertyServiceConnection {
public:
PropertyServiceConnection() : last_error_(0) {
socket_ = ::socket(AF_LOCAL, SOCK_STREAM | SOCK_CLOEXEC, 0);
if (socket_ == -1) {
last_error_ = errno;
return;
}
const size_t namelen = strlen(property_service_socket);
sockaddr_un addr;
memset(&addr, 0, sizeof(addr));
strlcpy(addr.sun_path, property_service_socket, sizeof(addr.sun_path));
addr.sun_family = AF_LOCAL;
socklen_t alen = namelen + offsetof(sockaddr_un, sun_path) + 1;
if (TEMP_FAILURE_RETRY(connect(socket_, reinterpret_cast<sockaddr*>(&addr), alen)) == -1) {
last_error_ = errno;
close(socket_);
socket_ = -1;
}
}
bool IsValid() {
return socket_ != -1;
}
int GetLastError() {
return last_error_;
}
bool RecvInt32(int32_t* value) {
int result = TEMP_FAILURE_RETRY(recv(socket_, value, sizeof(*value), MSG_WAITALL));
return CheckSendRecvResult(result, sizeof(*value));
}
int socket() {
return socket_;
}
~PropertyServiceConnection() {
if (socket_ != -1) {
close(socket_);
}
}
private:
bool CheckSendRecvResult(int result, int expected_len) {
if (result == -1) {
last_error_ = errno;
} else if (result != expected_len) {
last_error_ = -1;
} else {
last_error_ = 0;
}
return last_error_ == 0;
}
int socket_;
int last_error_;
friend class SocketWriter;
};
class SocketWriter {
public:
explicit SocketWriter(PropertyServiceConnection* connection)
: connection_(connection), iov_index_(0), uint_buf_index_(0)
{}
SocketWriter& WriteUint32(uint32_t value) {
CHECK(uint_buf_index_ < kUintBufSize);
CHECK(iov_index_ < kIovSize);
uint32_t* ptr = uint_buf_ + uint_buf_index_;
uint_buf_[uint_buf_index_++] = value;
iov_[iov_index_].iov_base = ptr;
iov_[iov_index_].iov_len = sizeof(*ptr);
++iov_index_;
return *this;
}
SocketWriter& WriteString(const char* value) {
uint32_t valuelen = strlen(value);
WriteUint32(valuelen);
if (valuelen == 0) {
return *this;
}
CHECK(iov_index_ < kIovSize);
iov_[iov_index_].iov_base = const_cast<char*>(value);
iov_[iov_index_].iov_len = valuelen;
++iov_index_;
return *this;
}
bool Send() {
if (!connection_->IsValid()) {
return false;
}
if (writev(connection_->socket(), iov_, iov_index_) == -1) {
connection_->last_error_ = errno;
return false;
}
iov_index_ = uint_buf_index_ = 0;
return true;
}
private:
static constexpr size_t kUintBufSize = 8;
static constexpr size_t kIovSize = 8;
PropertyServiceConnection* connection_;
iovec iov_[kIovSize];
size_t iov_index_;
uint32_t uint_buf_[kUintBufSize];
size_t uint_buf_index_;
DISALLOW_IMPLICIT_CONSTRUCTORS(SocketWriter);
};
struct prop_msg {
unsigned cmd;
char name[PROP_NAME_MAX];
char value[PROP_VALUE_MAX];
};
static int send_prop_msg(const prop_msg* msg) {
PropertyServiceConnection connection;
if (!connection.IsValid()) {
return connection.GetLastError();
}
int result = -1;
int s = connection.socket();
const int num_bytes = TEMP_FAILURE_RETRY(send(s, msg, sizeof(prop_msg), 0));
if (num_bytes == sizeof(prop_msg)) {
// We successfully wrote to the property server but now we
// wait for the property server to finish its work. It
// acknowledges its completion by closing the socket so we
// poll here (on nothing), waiting for the socket to close.
// If you 'adb shell setprop foo bar' you'll see the POLLHUP
// once the socket closes. Out of paranoia we cap our poll
// at 250 ms.
pollfd pollfds[1];
pollfds[0].fd = s;
pollfds[0].events = 0;
const int poll_result = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */));
if (poll_result == 1 && (pollfds[0].revents & POLLHUP) != 0) {
result = 0;
} else {
// Ignore the timeout and treat it like a success anyway.
// The init process is single-threaded and its property
// service is sometimes slow to respond (perhaps it's off
// starting a child process or something) and thus this
// times out and the caller thinks it failed, even though
// it's still getting around to it. So we fake it here,
// mostly for ctl.* properties, but we do try and wait 250
// ms so callers who do read-after-write can reliably see
// what they've written. Most of the time.
// TODO: fix the system properties design.
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"Property service has timed out while trying to set \"%s\" to \"%s\"",
msg->name, msg->value);
result = 0;
}
}
return result;
}
bool prop_area::foreach_property(prop_bt* const trie,
void (*propfn)(const prop_info* pi, void* cookie), void* cookie) {
if (!trie) return false;
uint_least32_t left_offset = atomic_load_explicit(&trie->left, memory_order_relaxed);
if (left_offset != 0) {
const int err = foreach_property(to_prop_bt(&trie->left), propfn, cookie);
if (err < 0) return false;
}
uint_least32_t prop_offset = atomic_load_explicit(&trie->prop, memory_order_relaxed);
if (prop_offset != 0) {
prop_info* info = to_prop_info(&trie->prop);
if (!info) return false;
propfn(info, cookie);
}
uint_least32_t children_offset = atomic_load_explicit(&trie->children, memory_order_relaxed);
if (children_offset != 0) {
const int err = foreach_property(to_prop_bt(&trie->children), propfn, cookie);
if (err < 0) return false;
}
uint_least32_t right_offset = atomic_load_explicit(&trie->right, memory_order_relaxed);
if (right_offset != 0) {
const int err = foreach_property(to_prop_bt(&trie->right), propfn, cookie);
if (err < 0) return false;
}
return true;
}
const prop_info* prop_area::find(const char* name) {
return find_property(root_node(), name, strlen(name), nullptr, 0, false);
}
bool prop_area::add(const char* name, unsigned int namelen, const char* value,
unsigned int valuelen) {
return find_property(root_node(), name, namelen, value, valuelen, true);
}
bool prop_area::foreach (void (*propfn)(const prop_info* pi, void* cookie), void* cookie) {
return foreach_property(root_node(), propfn, cookie);
}
class context_node {
public:
context_node(context_node* next, const char* context, prop_area* pa)
: next(next), context_(strdup(context)), pa_(pa), no_access_(false) {
lock_.init(false);
}
~context_node() {
unmap();
free(context_);
}
bool open(bool access_rw, bool* fsetxattr_failed);
bool check_access_and_open();
void reset_access();
const char* context() const {
return context_;
}
prop_area* pa() {
return pa_;
}
context_node* next;
private:
bool check_access();
void unmap();
Lock lock_;
char* context_;
prop_area* pa_;
bool no_access_;
};
struct prefix_node {
prefix_node(struct prefix_node* next, const char* prefix, context_node* context)
: prefix(strdup(prefix)), prefix_len(strlen(prefix)), context(context), next(next) {
}
~prefix_node() {
free(prefix);
}
char* prefix;
const size_t prefix_len;
context_node* context;
struct prefix_node* next;
};
template <typename List, typename... Args>
static inline void list_add(List** list, Args... args) {
*list = new List(*list, args...);
}
static void list_add_after_len(prefix_node** list, const char* prefix, context_node* context) {
size_t prefix_len = strlen(prefix);
auto next_list = list;
while (*next_list) {
if ((*next_list)->prefix_len < prefix_len || (*next_list)->prefix[0] == '*') {
list_add(next_list, prefix, context);
return;
}
next_list = &(*next_list)->next;
}
list_add(next_list, prefix, context);
}
template <typename List, typename Func>
static void list_foreach(List* list, Func func) {
while (list) {
func(list);
list = list->next;
}
}
template <typename List, typename Func>
static List* list_find(List* list, Func func) {
while (list) {
if (func(list)) {
return list;
}
list = list->next;
}
return nullptr;
}
template <typename List>
static void list_free(List** list) {
while (*list) {
auto old_list = *list;
*list = old_list->next;
delete old_list;
}
}
static prefix_node* prefixes = nullptr;
static context_node* contexts = nullptr;
/*
* pthread_mutex_lock() calls into system_properties in the case of contention.
* This creates a risk of dead lock if any system_properties functions
* use pthread locks after system_property initialization.
*
* For this reason, the below three functions use a bionic Lock and static
* allocation of memory for each filename.
*/
bool context_node::open(bool access_rw, bool* fsetxattr_failed) {
lock_.lock();
if (pa_) {
lock_.unlock();
return true;
}
char filename[PROP_FILENAME_MAX];
int len = async_safe_format_buffer(filename, sizeof(filename), "%s/%s", property_filename,
context_);
if (len < 0 || len > PROP_FILENAME_MAX) {
lock_.unlock();
return false;
}
if (access_rw) {
pa_ = map_prop_area_rw(filename, context_, fsetxattr_failed);
} else {
pa_ = map_prop_area(filename);
}
lock_.unlock();
return pa_;
}
bool context_node::check_access_and_open() {
if (!pa_ && !no_access_) {
if (!check_access() || !open(false, nullptr)) {
no_access_ = true;
}
}
return pa_;
}
void context_node::reset_access() {
if (!check_access()) {
unmap();
no_access_ = true;
} else {
no_access_ = false;
}
}
bool context_node::check_access() {
char filename[PROP_FILENAME_MAX];
int len = async_safe_format_buffer(filename, sizeof(filename), "%s/%s", property_filename,
context_);
if (len < 0 || len > PROP_FILENAME_MAX) {
return false;
}
return access(filename, R_OK) == 0;
}
void context_node::unmap() {
if (!pa_) {
return;
}
munmap(pa_, pa_size);
if (pa_ == __system_property_area__) {
__system_property_area__ = nullptr;
}
pa_ = nullptr;
}
static bool map_system_property_area(bool access_rw, bool* fsetxattr_failed) {
char filename[PROP_FILENAME_MAX];
int len =
async_safe_format_buffer(filename, sizeof(filename), "%s/properties_serial",
property_filename);
if (len < 0 || len > PROP_FILENAME_MAX) {
__system_property_area__ = nullptr;
return false;
}
if (access_rw) {
__system_property_area__ =
map_prop_area_rw(filename, "u:object_r:properties_serial:s0", fsetxattr_failed);
} else {
__system_property_area__ = map_prop_area(filename);
}
return __system_property_area__;
}
static prop_area* get_prop_area_for_name(const char* name) {
auto entry = list_find(prefixes, [name](prefix_node* l) {
return l->prefix[0] == '*' || !strncmp(l->prefix, name, l->prefix_len);
});
if (!entry) {
return nullptr;
}
auto cnode = entry->context;
if (!cnode->pa()) {
/*
* We explicitly do not check no_access_ in this case because unlike the
* case of foreach(), we want to generate an selinux audit for each
* non-permitted property access in this function.
*/
cnode->open(false, nullptr);
}
return cnode->pa();
}
/*
* The below two functions are duplicated from label_support.c in libselinux.
* TODO: Find a location suitable for these functions such that both libc and
* libselinux can share a common source file.
*/
/*
* The read_spec_entries and read_spec_entry functions may be used to
* replace sscanf to read entries from spec files. The file and
* property services now use these.
*/
/* Read an entry from a spec file (e.g. file_contexts) */
static inline int read_spec_entry(char** entry, char** ptr, int* len) {
*entry = nullptr;
char* tmp_buf = nullptr;
while (isspace(**ptr) && **ptr != '\0') (*ptr)++;
tmp_buf = *ptr;
*len = 0;
while (!isspace(**ptr) && **ptr != '\0') {
(*ptr)++;
(*len)++;
}
if (*len) {
*entry = strndup(tmp_buf, *len);
if (!*entry) return -1;
}
return 0;
}
/*
* line_buf - Buffer containing the spec entries .
* num_args - The number of spec parameter entries to process.
* ... - A 'char **spec_entry' for each parameter.
* returns - The number of items processed.
*
* This function calls read_spec_entry() to do the actual string processing.
*/
static int read_spec_entries(char* line_buf, int num_args, ...) {
char **spec_entry, *buf_p;
int len, rc, items, entry_len = 0;
va_list ap;
len = strlen(line_buf);
if (line_buf[len - 1] == '\n')
line_buf[len - 1] = '\0';
else
/* Handle case if line not \n terminated by bumping
* the len for the check below (as the line is NUL
* terminated by getline(3)) */
len++;
buf_p = line_buf;
while (isspace(*buf_p)) buf_p++;
/* Skip comment lines and empty lines. */
if (*buf_p == '#' || *buf_p == '\0') return 0;
/* Process the spec file entries */
va_start(ap, num_args);
items = 0;
while (items < num_args) {
spec_entry = va_arg(ap, char**);
if (len - 1 == buf_p - line_buf) {
va_end(ap);
return items;
}
rc = read_spec_entry(spec_entry, &buf_p, &entry_len);
if (rc < 0) {
va_end(ap);
return rc;
}
if (entry_len) items++;
}
va_end(ap);
return items;
}
static bool initialize_properties_from_file(const char* filename) {
FILE* file = fopen(filename, "re");
if (!file) {
return false;
}
char* buffer = nullptr;
size_t line_len;
char* prop_prefix = nullptr;
char* context = nullptr;
while (getline(&buffer, &line_len, file) > 0) {
int items = read_spec_entries(buffer, 2, &prop_prefix, &context);
if (items <= 0) {
continue;
}
if (items == 1) {
free(prop_prefix);
continue;
}
/*
* init uses ctl.* properties as an IPC mechanism and does not write them
* to a property file, therefore we do not need to create property files
* to store them.
*/
if (!strncmp(prop_prefix, "ctl.", 4)) {
free(prop_prefix);
free(context);
continue;
}
auto old_context =
list_find(contexts, [context](context_node* l) { return !strcmp(l->context(), context); });
if (old_context) {
list_add_after_len(&prefixes, prop_prefix, old_context);
} else {
list_add(&contexts, context, nullptr);
list_add_after_len(&prefixes, prop_prefix, contexts);
}
free(prop_prefix);
free(context);
}
free(buffer);
fclose(file);
return true;
}
static bool initialize_properties() {
// If we do find /property_contexts, then this is being
// run as part of the OTA updater on older release that had
// /property_contexts - b/34370523
if (initialize_properties_from_file("/property_contexts")) {
return true;
}
// Use property_contexts from /system & /vendor, fall back to those from /
if (access("/system/etc/selinux/plat_property_contexts", R_OK) != -1) {
if (!initialize_properties_from_file("/system/etc/selinux/plat_property_contexts")) {
return false;
}
if (!initialize_properties_from_file("/vendor/etc/selinux/nonplat_property_contexts")) {
return false;
}
} else {
if (!initialize_properties_from_file("/plat_property_contexts")) {
return false;
}
if (!initialize_properties_from_file("/nonplat_property_contexts")) {
return false;
}
}
return true;
}
static bool is_dir(const char* pathname) {
struct stat info;
if (stat(pathname, &info) == -1) {
return false;
}
return S_ISDIR(info.st_mode);
}
static void free_and_unmap_contexts() {
list_free(&prefixes);
list_free(&contexts);
if (__system_property_area__) {
munmap(__system_property_area__, pa_size);
__system_property_area__ = nullptr;
}
}
int __system_properties_init() {
// This is called from __libc_init_common, and should leave errno at 0 (http://b/37248982).
ErrnoRestorer errno_restorer;
if (initialized) {
list_foreach(contexts, [](context_node* l) { l->reset_access(); });
return 0;
}
if (is_dir(property_filename)) {
if (!initialize_properties()) {
return -1;
}
if (!map_system_property_area(false, nullptr)) {
free_and_unmap_contexts();
return -1;
}
} else {
__system_property_area__ = map_prop_area(property_filename);
if (!__system_property_area__) {
return -1;
}
list_add(&contexts, "legacy_system_prop_area", __system_property_area__);
list_add_after_len(&prefixes, "*", contexts);
}
initialized = true;
return 0;
}
int __system_property_set_filename(const char* filename) {
size_t len = strlen(filename);
if (len >= sizeof(property_filename)) return -1;
strcpy(property_filename, filename);
return 0;
}
int __system_property_area_init() {
free_and_unmap_contexts();
mkdir(property_filename, S_IRWXU | S_IXGRP | S_IXOTH);
if (!initialize_properties()) {
return -1;
}
bool open_failed = false;
bool fsetxattr_failed = false;
list_foreach(contexts, [&fsetxattr_failed, &open_failed](context_node* l) {
if (!l->open(true, &fsetxattr_failed)) {
open_failed = true;
}
});
if (open_failed || !map_system_property_area(true, &fsetxattr_failed)) {
free_and_unmap_contexts();
return -1;
}
initialized = true;
return fsetxattr_failed ? -2 : 0;
}
uint32_t __system_property_area_serial() {
prop_area* pa = __system_property_area__;
if (!pa) {
return -1;
}
// Make sure this read fulfilled before __system_property_serial
return atomic_load_explicit(pa->serial(), memory_order_acquire);
}
const prop_info* __system_property_find(const char* name) {
if (!__system_property_area__) {
return nullptr;
}
prop_area* pa = get_prop_area_for_name(name);
if (!pa) {
async_safe_format_log(ANDROID_LOG_ERROR, "libc", "Access denied finding property \"%s\"", name);
return nullptr;
}
return pa->find(name);
}
// The C11 standard doesn't allow atomic loads from const fields,
// though C++11 does. Fudge it until standards get straightened out.
static inline uint_least32_t load_const_atomic(const atomic_uint_least32_t* s, memory_order mo) {
atomic_uint_least32_t* non_const_s = const_cast<atomic_uint_least32_t*>(s);
return atomic_load_explicit(non_const_s, mo);
}
int __system_property_read(const prop_info* pi, char* name, char* value) {
while (true) {
uint32_t serial = __system_property_serial(pi); // acquire semantics
size_t len = SERIAL_VALUE_LEN(serial);
memcpy(value, pi->value, len + 1);
// TODO: Fix the synchronization scheme here.
// There is no fully supported way to implement this kind
// of synchronization in C++11, since the memcpy races with
// updates to pi, and the data being accessed is not atomic.
// The following fence is unintuitive, but would be the
// correct one if memcpy used memory_order_relaxed atomic accesses.
// In practice it seems unlikely that the generated code would
// would be any different, so this should be OK.
atomic_thread_fence(memory_order_acquire);
if (serial == load_const_atomic(&(pi->serial), memory_order_relaxed)) {
if (name != nullptr) {
size_t namelen = strlcpy(name, pi->name, PROP_NAME_MAX);
if (namelen >= PROP_NAME_MAX) {
async_safe_format_log(ANDROID_LOG_ERROR, "libc",
"The property name length for \"%s\" is >= %d;"
" please use __system_property_read_callback"
" to read this property. (the name is truncated to \"%s\")",
pi->name, PROP_NAME_MAX - 1, name);
}
}
return len;
}
}
}
void __system_property_read_callback(const prop_info* pi,
void (*callback)(void* cookie,
const char* name,
const char* value,
uint32_t serial),
void* cookie) {
while (true) {
uint32_t serial = __system_property_serial(pi); // acquire semantics
size_t len = SERIAL_VALUE_LEN(serial);
char value_buf[len + 1];
memcpy(value_buf, pi->value, len);
value_buf[len] = '\0';
// TODO: see todo in __system_property_read function
atomic_thread_fence(memory_order_acquire);
if (serial == load_const_atomic(&(pi->serial), memory_order_relaxed)) {
callback(cookie, pi->name, value_buf, serial);
return;
}
}
}
int __system_property_get(const char* name, char* value) {
const prop_info* pi = __system_property_find(name);
if (pi != 0) {
return __system_property_read(pi, nullptr, value);
} else {
value[0] = 0;
return 0;
}
}
static constexpr uint32_t kProtocolVersion1 = 1;
static constexpr uint32_t kProtocolVersion2 = 2; // current
static atomic_uint_least32_t g_propservice_protocol_version = 0;
static void detect_protocol_version() {
char value[PROP_VALUE_MAX];
if (__system_property_get(kServiceVersionPropertyName, value) == 0) {
g_propservice_protocol_version = kProtocolVersion1;
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"Using old property service protocol (\"%s\" is not set)",
kServiceVersionPropertyName);
} else {
uint32_t version = static_cast<uint32_t>(atoll(value));
if (version >= kProtocolVersion2) {
g_propservice_protocol_version = kProtocolVersion2;
} else {
async_safe_format_log(ANDROID_LOG_WARN, "libc",
"Using old property service protocol (\"%s\"=\"%s\")",
kServiceVersionPropertyName, value);
g_propservice_protocol_version = kProtocolVersion1;
}
}
}
int __system_property_set(const char* key, const char* value) {
if (key == nullptr) return -1;
if (value == nullptr) value = "";
if (strlen(value) >= PROP_VALUE_MAX) return -1;
if (g_propservice_protocol_version == 0) {
detect_protocol_version();
}
if (g_propservice_protocol_version == kProtocolVersion1) {
// Old protocol does not support long names
if (strlen(key) >= PROP_NAME_MAX) return -1;
prop_msg msg;
memset(&msg, 0, sizeof msg);
msg.cmd = PROP_MSG_SETPROP;
strlcpy(msg.name, key, sizeof msg.name);
strlcpy(msg.value, value, sizeof msg.value);
return send_prop_msg(&msg);
} else {
// Use proper protocol
PropertyServiceConnection connection;
if (!connection.IsValid()) {
errno = connection.GetLastError();
async_safe_format_log(ANDROID_LOG_WARN,
"libc",
"Unable to set property \"%s\" to \"%s\": connection failed; errno=%d (%s)",
key,
value,
errno,
strerror(errno));
return -1;
}
SocketWriter writer(&connection);
if (!writer.WriteUint32(PROP_MSG_SETPROP2).WriteString(key).WriteString(value).Send()) {
errno = connection.GetLastError();
async_safe_format_log(ANDROID_LOG_WARN,
"libc",
"Unable to set property \"%s\" to \"%s\": write failed; errno=%d (%s)",
key,
value,
errno,
strerror(errno));
return -1;
}
int result = -1;
if (!connection.RecvInt32(&result)) {
errno = connection.GetLastError();
async_safe_format_log(ANDROID_LOG_WARN,
"libc",
"Unable to set property \"%s\" to \"%s\": recv failed; errno=%d (%s)",
key,
value,
errno,
strerror(errno));
return -1;
}
if (result != PROP_SUCCESS) {
async_safe_format_log(ANDROID_LOG_WARN,
"libc",
"Unable to set property \"%s\" to \"%s\": error code: 0x%x",
key,
value,
result);
return -1;
}
return 0;
}
}
int __system_property_update(prop_info* pi, const char* value, unsigned int len) {
if (len >= PROP_VALUE_MAX) {
return -1;
}
prop_area* pa = __system_property_area__;
if (!pa) {
return -1;
}
uint32_t serial = atomic_load_explicit(&pi->serial, memory_order_relaxed);
serial |= 1;
atomic_store_explicit(&pi->serial, serial, memory_order_relaxed);
// The memcpy call here also races. Again pretend it
// used memory_order_relaxed atomics, and use the analogous
// counterintuitive fence.
atomic_thread_fence(memory_order_release);
strlcpy(pi->value, value, len + 1);
atomic_store_explicit(&pi->serial, (len << 24) | ((serial + 1) & 0xffffff), memory_order_release);
__futex_wake(&pi->serial, INT32_MAX);
atomic_store_explicit(pa->serial(), atomic_load_explicit(pa->serial(), memory_order_relaxed) + 1,
memory_order_release);
__futex_wake(pa->serial(), INT32_MAX);
return 0;
}
int __system_property_add(const char* name, unsigned int namelen, const char* value,
unsigned int valuelen) {
if (valuelen >= PROP_VALUE_MAX) {
return -1;
}
if (namelen < 1) {
return -1;
}
if (!__system_property_area__) {
return -1;
}
prop_area* pa = get_prop_area_for_name(name);
if (!pa) {
async_safe_format_log(ANDROID_LOG_ERROR, "libc", "Access denied adding property \"%s\"", name);
return -1;
}
bool ret = pa->add(name, namelen, value, valuelen);
if (!ret) {
return -1;
}
// There is only a single mutator, but we want to make sure that
// updates are visible to a reader waiting for the update.
atomic_store_explicit(
__system_property_area__->serial(),
atomic_load_explicit(__system_property_area__->serial(), memory_order_relaxed) + 1,
memory_order_release);
__futex_wake(__system_property_area__->serial(), INT32_MAX);
return 0;
}
// Wait for non-locked serial, and retrieve it with acquire semantics.
uint32_t __system_property_serial(const prop_info* pi) {
uint32_t serial = load_const_atomic(&pi->serial, memory_order_acquire);
while (SERIAL_DIRTY(serial)) {
__futex_wait(const_cast<_Atomic(uint_least32_t)*>(&pi->serial), serial, nullptr);
serial = load_const_atomic(&pi->serial, memory_order_acquire);
}
return serial;
}
uint32_t __system_property_wait_any(uint32_t old_serial) {
uint32_t new_serial;
__system_property_wait(nullptr, old_serial, &new_serial, nullptr);
return new_serial;
}
bool __system_property_wait(const prop_info* pi,
uint32_t old_serial,
uint32_t* new_serial_ptr,
const timespec* relative_timeout) {
// Are we waiting on the global serial or a specific serial?
atomic_uint_least32_t* serial_ptr;
if (pi == nullptr) {
if (__system_property_area__ == nullptr) return -1;
serial_ptr = __system_property_area__->serial();
} else {
serial_ptr = const_cast<atomic_uint_least32_t*>(&pi->serial);
}
uint32_t new_serial;
do {
int rc;
if ((rc = __futex_wait(serial_ptr, old_serial, relative_timeout)) != 0 && rc == -ETIMEDOUT) {
return false;
}
new_serial = load_const_atomic(serial_ptr, memory_order_acquire);
} while (new_serial == old_serial);
*new_serial_ptr = new_serial;
return true;
}
const prop_info* __system_property_find_nth(unsigned n) {
struct find_nth {
const uint32_t sought;
uint32_t current;
const prop_info* result;
explicit find_nth(uint32_t n) : sought(n), current(0), result(nullptr) {}
static void fn(const prop_info* pi, void* ptr) {
find_nth* self = reinterpret_cast<find_nth*>(ptr);
if (self->current++ == self->sought) self->result = pi;
}
} state(n);
__system_property_foreach(find_nth::fn, &state);
return state.result;
}
int __system_property_foreach(void (*propfn)(const prop_info* pi, void* cookie), void* cookie) {
if (!__system_property_area__) {
return -1;
}
list_foreach(contexts, [propfn, cookie](context_node* l) {
if (l->check_access_and_open()) {
l->pa()->foreach(propfn, cookie);
}
});
return 0;
}