platform_bionic/libc/malloc_debug/malloc_debug.cpp
Nick Desaulniers c574f79afa Clean up __always_inline
While studying the implementation of POSIX pthread_rwlock* functions, I noticed
that two functions were marked __always_inline twice. "They must really mean it
this time."

Also add back `inline` keyword to one other usage of __always_inline to be
consistent with other uses of __always_inline throughout the codebase.

Change-Id: Ibf9eaed5fc9fd03afcdd969cff82dec71a8ce30f
2024-04-17 10:50:41 -07:00

1173 lines
34 KiB
C++

/*
* Copyright (C) 2012 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <errno.h>
#include <inttypes.h>
#include <malloc.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <mutex>
#include <vector>
#include <android-base/file.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <bionic/malloc_tagged_pointers.h>
#include <platform/bionic/reserved_signals.h>
#include <private/MallocXmlElem.h>
#include <private/bionic_malloc_dispatch.h>
#include <unwindstack/Unwinder.h>
#include "Config.h"
#include "DebugData.h"
#include "LogAllocatorStats.h"
#include "Unreachable.h"
#include "UnwindBacktrace.h"
#include "backtrace.h"
#include "debug_disable.h"
#include "debug_log.h"
#include "malloc_debug.h"
// ------------------------------------------------------------------------
// Global Data
// ------------------------------------------------------------------------
DebugData* g_debug;
bool* g_zygote_child;
const MallocDispatch* g_dispatch;
static inline __always_inline uint64_t Nanotime() {
struct timespec t = {};
clock_gettime(CLOCK_MONOTONIC, &t);
return static_cast<uint64_t>(t.tv_sec) * 1000000000LL + t.tv_nsec;
}
namespace {
// A TimedResult contains the result of from malloc end_ns al. functions and the
// start/end timestamps.
struct TimedResult {
uint64_t start_ns = 0;
uint64_t end_ns = 0;
union {
size_t s;
int i;
void* p;
} v;
uint64_t GetStartTimeNS() const { return start_ns; }
uint64_t GetEndTimeNS() const { return end_ns; }
void SetStartTimeNS(uint64_t t) { start_ns = t; }
void SetEndTimeNS(uint64_t t) { end_ns = t; }
template <typename T>
void setValue(T);
template <>
void setValue(size_t s) {
v.s = s;
}
template <>
void setValue(int i) {
v.i = i;
}
template <>
void setValue(void* p) {
v.p = p;
}
template <typename T>
T getValue() const;
template <>
size_t getValue<size_t>() const {
return v.s;
}
template <>
int getValue<int>() const {
return v.i;
}
template <>
void* getValue<void*>() const {
return v.p;
}
};
class ScopedTimer {
public:
ScopedTimer(TimedResult& res) : res_(res) { res_.start_ns = Nanotime(); }
~ScopedTimer() { res_.end_ns = Nanotime(); }
private:
TimedResult& res_;
};
} // namespace
template <typename MallocFn, typename... Args>
static TimedResult TimerCall(MallocFn fn, Args... args) {
TimedResult ret;
decltype((g_dispatch->*fn)(args...)) r;
if (g_debug->config().options() & RECORD_ALLOCS) {
ScopedTimer t(ret);
r = (g_dispatch->*fn)(args...);
} else {
r = (g_dispatch->*fn)(args...);
}
ret.setValue<decltype(r)>(r);
return ret;
}
template <typename MallocFn, typename... Args>
static TimedResult TimerCallVoid(MallocFn fn, Args... args) {
TimedResult ret;
{
ScopedTimer t(ret);
(g_dispatch->*fn)(args...);
}
return ret;
}
#define TCALL(FUNC, ...) TimerCall(&MallocDispatch::FUNC, __VA_ARGS__);
#define TCALLVOID(FUNC, ...) TimerCallVoid(&MallocDispatch::FUNC, __VA_ARGS__);
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
// Use C style prototypes for all exported functions. This makes it easy
// to do dlsym lookups during libc initialization when malloc debug
// is enabled.
// ------------------------------------------------------------------------
__BEGIN_DECLS
bool debug_initialize(const MallocDispatch* malloc_dispatch, bool* malloc_zygote_child,
const char* options);
void debug_finalize();
void debug_dump_heap(const char* file_name);
void debug_get_malloc_leak_info(uint8_t** info, size_t* overall_size, size_t* info_size,
size_t* total_memory, size_t* backtrace_size);
bool debug_write_malloc_leak_info(FILE* fp);
ssize_t debug_malloc_backtrace(void* pointer, uintptr_t* frames, size_t frame_count);
void debug_free_malloc_leak_info(uint8_t* info);
size_t debug_malloc_usable_size(void* pointer);
void* debug_malloc(size_t size);
void debug_free(void* pointer);
void* debug_aligned_alloc(size_t alignment, size_t size);
void* debug_memalign(size_t alignment, size_t bytes);
void* debug_realloc(void* pointer, size_t bytes);
void* debug_calloc(size_t nmemb, size_t bytes);
struct mallinfo debug_mallinfo();
int debug_mallopt(int param, int value);
int debug_malloc_info(int options, FILE* fp);
int debug_posix_memalign(void** memptr, size_t alignment, size_t size);
int debug_malloc_iterate(uintptr_t base, size_t size,
void (*callback)(uintptr_t base, size_t size, void* arg), void* arg);
void debug_malloc_disable();
void debug_malloc_enable();
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
void* debug_pvalloc(size_t bytes);
void* debug_valloc(size_t size);
#endif
__END_DECLS
// ------------------------------------------------------------------------
class ScopedConcurrentLock {
public:
ScopedConcurrentLock() {
pthread_rwlock_rdlock(&lock_);
}
~ScopedConcurrentLock() {
pthread_rwlock_unlock(&lock_);
}
static void Init() {
pthread_rwlockattr_t attr;
// Set the attribute so that when a write lock is pending, read locks are no
// longer granted.
pthread_rwlockattr_setkind_np(&attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
pthread_rwlock_init(&lock_, &attr);
}
static void BlockAllOperations() {
pthread_rwlock_wrlock(&lock_);
}
private:
static pthread_rwlock_t lock_;
};
pthread_rwlock_t ScopedConcurrentLock::lock_;
// Use this because the sigprocmask* functions filter out the reserved bionic
// signals including the signal this code blocks.
static inline int __rt_sigprocmask(int how, const sigset64_t* new_set, sigset64_t* old_set,
size_t sigset_size) {
return syscall(SYS_rt_sigprocmask, how, new_set, old_set, sigset_size);
}
// Need to block the backtrace signal while in malloc debug routines
// otherwise there is a chance of a deadlock and timeout when unwinding.
// This can occur if a thread is paused while owning a malloc debug
// internal lock.
class ScopedBacktraceSignalBlocker {
public:
ScopedBacktraceSignalBlocker() {
sigemptyset64(&backtrace_set_);
sigaddset64(&backtrace_set_, BIONIC_SIGNAL_BACKTRACE);
sigset64_t old_set;
__rt_sigprocmask(SIG_BLOCK, &backtrace_set_, &old_set, sizeof(backtrace_set_));
if (sigismember64(&old_set, BIONIC_SIGNAL_BACKTRACE)) {
unblock_ = false;
}
}
~ScopedBacktraceSignalBlocker() {
if (unblock_) {
__rt_sigprocmask(SIG_UNBLOCK, &backtrace_set_, nullptr, sizeof(backtrace_set_));
}
}
private:
bool unblock_ = true;
sigset64_t backtrace_set_;
};
static void InitAtfork() {
static pthread_once_t atfork_init = PTHREAD_ONCE_INIT;
pthread_once(&atfork_init, []() {
pthread_atfork(
[]() {
if (g_debug != nullptr) {
g_debug->PrepareFork();
}
},
[]() {
if (g_debug != nullptr) {
g_debug->PostForkParent();
}
},
[]() {
if (g_debug != nullptr) {
g_debug->PostForkChild();
}
});
});
}
void BacktraceAndLog() {
if (g_debug->config().options() & BACKTRACE_FULL) {
std::vector<uintptr_t> frames;
std::vector<unwindstack::FrameData> frames_info;
if (!Unwind(&frames, &frames_info, 256)) {
error_log(" Backtrace failed to get any frames.");
} else {
UnwindLog(frames_info);
}
} else {
std::vector<uintptr_t> frames(256);
size_t num_frames = backtrace_get(frames.data(), frames.size());
if (num_frames == 0) {
error_log(" Backtrace failed to get any frames.");
} else {
backtrace_log(frames.data(), num_frames);
}
}
}
static void LogError(const void* pointer, const char* error_str) {
error_log(LOG_DIVIDER);
error_log("+++ ALLOCATION %p %s", pointer, error_str);
// If we are tracking already freed pointers, check to see if this is
// one so we can print extra information.
if (g_debug->config().options() & FREE_TRACK) {
PointerData::LogFreeBacktrace(pointer);
}
error_log("Backtrace at time of failure:");
BacktraceAndLog();
error_log(LOG_DIVIDER);
if (g_debug->config().options() & ABORT_ON_ERROR) {
abort();
}
}
static bool VerifyPointer(const void* pointer, const char* function_name) {
if (g_debug->HeaderEnabled()) {
Header* header = g_debug->GetHeader(pointer);
if (header->tag != DEBUG_TAG) {
std::string error_str;
if (header->tag == DEBUG_FREE_TAG) {
error_str = std::string("USED AFTER FREE (") + function_name + ")";
} else {
error_str = android::base::StringPrintf("HAS INVALID TAG %" PRIx32 " (%s)", header->tag,
function_name);
}
LogError(pointer, error_str.c_str());
return false;
}
}
if (g_debug->TrackPointers()) {
if (!PointerData::Exists(pointer)) {
std::string error_str(std::string("UNKNOWN POINTER (") + function_name + ")");
LogError(pointer, error_str.c_str());
return false;
}
}
return true;
}
static size_t InternalMallocUsableSize(void* pointer) {
if (g_debug->HeaderEnabled()) {
return g_debug->GetHeader(pointer)->usable_size;
} else {
return g_dispatch->malloc_usable_size(pointer);
}
}
static void* InitHeader(Header* header, void* orig_pointer, size_t size) {
header->tag = DEBUG_TAG;
header->orig_pointer = orig_pointer;
header->size = size;
header->usable_size = g_dispatch->malloc_usable_size(orig_pointer);
if (header->usable_size == 0) {
g_dispatch->free(orig_pointer);
return nullptr;
}
header->usable_size -= g_debug->pointer_offset() + reinterpret_cast<uintptr_t>(header) -
reinterpret_cast<uintptr_t>(orig_pointer);
if (g_debug->config().options() & FRONT_GUARD) {
uint8_t* guard = g_debug->GetFrontGuard(header);
memset(guard, g_debug->config().front_guard_value(), g_debug->config().front_guard_bytes());
}
if (g_debug->config().options() & REAR_GUARD) {
uint8_t* guard = g_debug->GetRearGuard(header);
memset(guard, g_debug->config().rear_guard_value(), g_debug->config().rear_guard_bytes());
// If the rear guard is enabled, set the usable size to the exact size
// of the allocation.
header->usable_size = header->size;
}
return g_debug->GetPointer(header);
}
extern "C" void __asan_init() __attribute__((weak));
bool debug_initialize(const MallocDispatch* malloc_dispatch, bool* zygote_child,
const char* options) {
if (zygote_child == nullptr || options == nullptr) {
return false;
}
if (__asan_init != 0) {
error_log("malloc debug cannot be enabled alongside ASAN");
return false;
}
InitAtfork();
g_zygote_child = zygote_child;
g_dispatch = malloc_dispatch;
if (!DebugDisableInitialize()) {
return false;
}
DebugData* debug = new DebugData();
if (!debug->Initialize(options) || !Unreachable::Initialize(debug->config())) {
delete debug;
DebugDisableFinalize();
return false;
}
g_debug = debug;
// Always enable the backtrace code since we will use it in a number
// of different error cases.
backtrace_startup();
if (g_debug->config().options() & VERBOSE) {
info_log("%s: malloc debug enabled", getprogname());
}
ScopedConcurrentLock::Init();
return true;
}
void debug_finalize() {
if (g_debug == nullptr) {
return;
}
// Make sure that there are no other threads doing debug allocations
// before we kill everything.
ScopedConcurrentLock::BlockAllOperations();
// Turn off capturing allocations calls.
DebugDisableSet(true);
if (g_debug->config().options() & FREE_TRACK) {
PointerData::VerifyAllFreed();
}
if (g_debug->config().options() & LEAK_TRACK) {
PointerData::LogLeaks();
}
if ((g_debug->config().options() & BACKTRACE) && g_debug->config().backtrace_dump_on_exit()) {
debug_dump_heap(android::base::StringPrintf("%s.%d.exit.txt",
g_debug->config().backtrace_dump_prefix().c_str(),
getpid()).c_str());
}
backtrace_shutdown();
// In order to prevent any issues of threads freeing previous pointers
// after the main thread calls this code, simply leak the g_debug pointer
// and do not destroy the debug disable pthread key.
}
void debug_get_malloc_leak_info(uint8_t** info, size_t* overall_size, size_t* info_size,
size_t* total_memory, size_t* backtrace_size) {
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
// Verify the arguments.
if (info == nullptr || overall_size == nullptr || info_size == nullptr || total_memory == nullptr ||
backtrace_size == nullptr) {
error_log("get_malloc_leak_info: At least one invalid parameter.");
return;
}
*info = nullptr;
*overall_size = 0;
*info_size = 0;
*total_memory = 0;
*backtrace_size = 0;
if (!(g_debug->config().options() & BACKTRACE)) {
error_log(
"get_malloc_leak_info: Allocations not being tracked, to enable "
"set the option 'backtrace'.");
return;
}
PointerData::GetInfo(info, overall_size, info_size, total_memory, backtrace_size);
}
void debug_free_malloc_leak_info(uint8_t* info) {
g_dispatch->free(info);
// Purge the memory that was freed since a significant amount of
// memory could have been allocated and freed.
g_dispatch->mallopt(M_PURGE_ALL, 0);
}
size_t debug_malloc_usable_size(void* pointer) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled() || pointer == nullptr) {
return g_dispatch->malloc_usable_size(pointer);
}
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
if (!VerifyPointer(pointer, "malloc_usable_size")) {
return 0;
}
return InternalMallocUsableSize(pointer);
}
static TimedResult InternalMalloc(size_t size) {
uint64_t options = g_debug->config().options();
if ((options & BACKTRACE) && g_debug->pointer->ShouldDumpAndReset()) {
debug_dump_heap(android::base::StringPrintf(
"%s.%d.txt", g_debug->config().backtrace_dump_prefix().c_str(), getpid())
.c_str());
}
if (options & LOG_ALLOCATOR_STATS_ON_SIGNAL) {
LogAllocatorStats::CheckIfShouldLog();
}
if (size == 0) {
size = 1;
}
TimedResult result;
size_t real_size = size + g_debug->extra_bytes();
if (real_size < size) {
// Overflow.
errno = ENOMEM;
result.setValue<void*>(nullptr);
return result;
}
if (size > PointerInfoType::MaxSize()) {
errno = ENOMEM;
result.setValue<void*>(nullptr);
return result;
}
if (g_debug->HeaderEnabled()) {
result = TCALL(memalign, MINIMUM_ALIGNMENT_BYTES, real_size);
Header* header = reinterpret_cast<Header*>(result.getValue<void*>());
if (header == nullptr) {
return result;
}
result.setValue<void*>(InitHeader(header, header, size));
} else {
result = TCALL(malloc, real_size);
}
void* pointer = result.getValue<void*>();
if (pointer != nullptr) {
if (g_debug->TrackPointers()) {
PointerData::Add(pointer, size);
}
if (g_debug->config().options() & FILL_ON_ALLOC) {
size_t bytes = InternalMallocUsableSize(pointer);
size_t fill_bytes = g_debug->config().fill_on_alloc_bytes();
bytes = (bytes < fill_bytes) ? bytes : fill_bytes;
memset(pointer, g_debug->config().fill_alloc_value(), bytes);
}
}
return result;
}
void* debug_malloc(size_t size) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->malloc(size);
}
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
TimedResult result = InternalMalloc(size);
if (g_debug->config().options() & RECORD_ALLOCS) {
g_debug->record->AddEntry(new MallocEntry(result.getValue<void*>(), size,
result.GetStartTimeNS(), result.GetEndTimeNS()));
}
return result.getValue<void*>();
}
static TimedResult InternalFree(void* pointer) {
uint64_t options = g_debug->config().options();
if ((options & BACKTRACE) && g_debug->pointer->ShouldDumpAndReset()) {
debug_dump_heap(android::base::StringPrintf(
"%s.%d.txt", g_debug->config().backtrace_dump_prefix().c_str(), getpid())
.c_str());
}
if (options & LOG_ALLOCATOR_STATS_ON_SIGNAL) {
LogAllocatorStats::CheckIfShouldLog();
}
void* free_pointer = pointer;
size_t bytes;
Header* header;
if (g_debug->HeaderEnabled()) {
header = g_debug->GetHeader(pointer);
free_pointer = header->orig_pointer;
if (g_debug->config().options() & FRONT_GUARD) {
if (!g_debug->front_guard->Valid(header)) {
g_debug->front_guard->LogFailure(header);
}
}
if (g_debug->config().options() & REAR_GUARD) {
if (!g_debug->rear_guard->Valid(header)) {
g_debug->rear_guard->LogFailure(header);
}
}
header->tag = DEBUG_FREE_TAG;
bytes = header->usable_size;
} else {
bytes = g_dispatch->malloc_usable_size(pointer);
}
if (g_debug->config().options() & FILL_ON_FREE) {
size_t fill_bytes = g_debug->config().fill_on_free_bytes();
fill_bytes = (bytes < fill_bytes) ? bytes : fill_bytes;
memset(pointer, g_debug->config().fill_free_value(), fill_bytes);
}
if (g_debug->TrackPointers()) {
PointerData::Remove(pointer);
}
TimedResult result;
if (g_debug->config().options() & FREE_TRACK) {
// Do not add the allocation until we are done modifying the pointer
// itself. This avoids a race if a lot of threads are all doing
// frees at the same time and we wind up trying to really free this
// pointer from another thread, while still trying to free it in
// this function.
pointer = PointerData::AddFreed(pointer, bytes);
if (pointer != nullptr && g_debug->HeaderEnabled()) {
pointer = g_debug->GetHeader(pointer)->orig_pointer;
}
result = TCALLVOID(free, pointer);
} else {
result = TCALLVOID(free, free_pointer);
}
return result;
}
void debug_free(void* pointer) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled() || pointer == nullptr) {
return g_dispatch->free(pointer);
}
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
if (!VerifyPointer(pointer, "free")) {
return;
}
TimedResult result = InternalFree(pointer);
if (g_debug->config().options() & RECORD_ALLOCS) {
g_debug->record->AddEntry(
new FreeEntry(pointer, result.GetStartTimeNS(), result.GetEndTimeNS()));
}
}
void* debug_memalign(size_t alignment, size_t bytes) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->memalign(alignment, bytes);
}
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
if (bytes == 0) {
bytes = 1;
}
if (bytes > PointerInfoType::MaxSize()) {
errno = ENOMEM;
return nullptr;
}
TimedResult result;
void* pointer;
if (g_debug->HeaderEnabled()) {
// Make the alignment a power of two.
if (!powerof2(alignment)) {
alignment = BIONIC_ROUND_UP_POWER_OF_2(alignment);
}
// Force the alignment to at least MINIMUM_ALIGNMENT_BYTES to guarantee
// that the header is aligned properly.
if (alignment < MINIMUM_ALIGNMENT_BYTES) {
alignment = MINIMUM_ALIGNMENT_BYTES;
}
// We don't have any idea what the natural alignment of
// the underlying native allocator is, so we always need to
// over allocate.
size_t real_size = alignment + bytes + g_debug->extra_bytes();
if (real_size < bytes) {
// Overflow.
errno = ENOMEM;
return nullptr;
}
result = TCALL(malloc, real_size);
pointer = result.getValue<void*>();
if (pointer == nullptr) {
return nullptr;
}
uintptr_t value = reinterpret_cast<uintptr_t>(pointer) + g_debug->pointer_offset();
// Now align the pointer.
value += (-value % alignment);
Header* header = g_debug->GetHeader(reinterpret_cast<void*>(value));
// Don't need to update `result` here because we only need the timestamps.
pointer = InitHeader(header, pointer, bytes);
} else {
size_t real_size = bytes + g_debug->extra_bytes();
if (real_size < bytes) {
// Overflow.
errno = ENOMEM;
return nullptr;
}
result = TCALL(memalign, alignment, real_size);
pointer = result.getValue<void*>();
}
if (pointer != nullptr) {
if (g_debug->TrackPointers()) {
PointerData::Add(pointer, bytes);
}
if (g_debug->config().options() & FILL_ON_ALLOC) {
size_t bytes = InternalMallocUsableSize(pointer);
size_t fill_bytes = g_debug->config().fill_on_alloc_bytes();
bytes = (bytes < fill_bytes) ? bytes : fill_bytes;
memset(pointer, g_debug->config().fill_alloc_value(), bytes);
}
if (g_debug->config().options() & RECORD_ALLOCS) {
g_debug->record->AddEntry(new MemalignEntry(pointer, bytes, alignment,
result.GetStartTimeNS(), result.GetEndTimeNS()));
}
}
return pointer;
}
void* debug_realloc(void* pointer, size_t bytes) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->realloc(pointer, bytes);
}
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
if (pointer == nullptr) {
TimedResult result = InternalMalloc(bytes);
if (g_debug->config().options() & RECORD_ALLOCS) {
g_debug->record->AddEntry(new ReallocEntry(result.getValue<void*>(), bytes, nullptr,
result.GetStartTimeNS(), result.GetEndTimeNS()));
}
pointer = result.getValue<void*>();
return pointer;
}
if (!VerifyPointer(pointer, "realloc")) {
return nullptr;
}
if (bytes == 0) {
TimedResult result = InternalFree(pointer);
if (g_debug->config().options() & RECORD_ALLOCS) {
g_debug->record->AddEntry(new ReallocEntry(nullptr, bytes, pointer, result.GetStartTimeNS(),
result.GetEndTimeNS()));
}
return nullptr;
}
size_t real_size = bytes;
if (g_debug->config().options() & EXPAND_ALLOC) {
real_size += g_debug->config().expand_alloc_bytes();
if (real_size < bytes) {
// Overflow.
errno = ENOMEM;
return nullptr;
}
}
if (bytes > PointerInfoType::MaxSize()) {
errno = ENOMEM;
return nullptr;
}
TimedResult result;
void* new_pointer;
size_t prev_size;
if (g_debug->HeaderEnabled()) {
// Same size, do nothing.
Header* header = g_debug->GetHeader(pointer);
if (real_size == header->size) {
if (g_debug->TrackPointers()) {
// Remove and re-add so that the backtrace is updated.
PointerData::Remove(pointer);
PointerData::Add(pointer, real_size);
}
return pointer;
}
// Allocation is shrinking.
if (real_size < header->usable_size) {
header->size = real_size;
if (g_debug->config().options() & REAR_GUARD) {
// Don't bother allocating a smaller pointer in this case, simply
// change the header usable_size and reset the rear guard.
header->usable_size = header->size;
memset(g_debug->GetRearGuard(header), g_debug->config().rear_guard_value(),
g_debug->config().rear_guard_bytes());
}
if (g_debug->TrackPointers()) {
// Remove and re-add so that the backtrace is updated.
PointerData::Remove(pointer);
PointerData::Add(pointer, real_size);
}
return pointer;
}
// Allocate the new size.
result = InternalMalloc(bytes);
new_pointer = result.getValue<void*>();
if (new_pointer == nullptr) {
errno = ENOMEM;
return nullptr;
}
prev_size = header->usable_size;
memcpy(new_pointer, pointer, prev_size);
TimedResult free_time = InternalFree(pointer);
// `realloc` is split into two steps, update the end time to the finish time
// of the second operation.
result.SetEndTimeNS(free_time.GetEndTimeNS());
} else {
if (g_debug->TrackPointers()) {
PointerData::Remove(pointer);
}
prev_size = g_dispatch->malloc_usable_size(pointer);
result = TCALL(realloc, pointer, real_size);
new_pointer = result.getValue<void*>();
if (new_pointer == nullptr) {
return nullptr;
}
if (g_debug->TrackPointers()) {
PointerData::Add(new_pointer, real_size);
}
}
if (g_debug->config().options() & FILL_ON_ALLOC) {
size_t bytes = InternalMallocUsableSize(new_pointer);
if (bytes > g_debug->config().fill_on_alloc_bytes()) {
bytes = g_debug->config().fill_on_alloc_bytes();
}
if (bytes > prev_size) {
memset(reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(new_pointer) + prev_size),
g_debug->config().fill_alloc_value(), bytes - prev_size);
}
}
if (g_debug->config().options() & RECORD_ALLOCS) {
g_debug->record->AddEntry(new ReallocEntry(new_pointer, bytes, pointer, result.GetStartTimeNS(),
result.GetEndTimeNS()));
}
return new_pointer;
}
void* debug_calloc(size_t nmemb, size_t bytes) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->calloc(nmemb, bytes);
}
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
size_t size;
if (__builtin_mul_overflow(nmemb, bytes, &size)) {
// Overflow
errno = ENOMEM;
return nullptr;
}
if (size == 0) {
size = 1;
}
size_t real_size;
if (__builtin_add_overflow(size, g_debug->extra_bytes(), &real_size)) {
// Overflow.
errno = ENOMEM;
return nullptr;
}
if (real_size > PointerInfoType::MaxSize()) {
errno = ENOMEM;
return nullptr;
}
void* pointer;
TimedResult result;
if (g_debug->HeaderEnabled()) {
// Need to guarantee the alignment of the header.
result = TCALL(memalign, MINIMUM_ALIGNMENT_BYTES, real_size);
Header* header = reinterpret_cast<Header*>(result.getValue<void*>());
if (header == nullptr) {
return nullptr;
}
memset(header, 0, g_dispatch->malloc_usable_size(header));
pointer = InitHeader(header, header, size);
} else {
result = TCALL(calloc, 1, real_size);
pointer = result.getValue<void*>();
}
if (g_debug->config().options() & RECORD_ALLOCS) {
g_debug->record->AddEntry(
new CallocEntry(pointer, nmemb, bytes, result.GetStartTimeNS(), result.GetEndTimeNS()));
}
if (pointer != nullptr && g_debug->TrackPointers()) {
PointerData::Add(pointer, size);
}
return pointer;
}
struct mallinfo debug_mallinfo() {
return g_dispatch->mallinfo();
}
int debug_mallopt(int param, int value) {
return g_dispatch->mallopt(param, value);
}
int debug_malloc_info(int options, FILE* fp) {
if (DebugCallsDisabled() || !g_debug->TrackPointers()) {
return g_dispatch->malloc_info(options, fp);
}
// Make sure any pending output is written to the file.
fflush(fp);
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
// Avoid any issues where allocations are made that will be freed
// in the fclose.
int fd = fileno(fp);
MallocXmlElem root(fd, "malloc", "version=\"debug-malloc-1\"");
std::vector<ListInfoType> list;
PointerData::GetAllocList(&list);
size_t alloc_num = 0;
for (size_t i = 0; i < list.size(); i++) {
MallocXmlElem alloc(fd, "allocation", "nr=\"%zu\"", alloc_num);
size_t total = 1;
size_t size = list[i].size;
while (i < list.size() - 1 && list[i + 1].size == size) {
i++;
total++;
}
MallocXmlElem(fd, "size").Contents("%zu", list[i].size);
MallocXmlElem(fd, "total").Contents("%zu", total);
alloc_num++;
}
return 0;
}
void* debug_aligned_alloc(size_t alignment, size_t size) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->aligned_alloc(alignment, size);
}
if (!powerof2(alignment) || (size % alignment) != 0) {
errno = EINVAL;
return nullptr;
}
return debug_memalign(alignment, size);
}
int debug_posix_memalign(void** memptr, size_t alignment, size_t size) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->posix_memalign(memptr, alignment, size);
}
if (alignment < sizeof(void*) || !powerof2(alignment)) {
return EINVAL;
}
int saved_errno = errno;
*memptr = debug_memalign(alignment, size);
errno = saved_errno;
return (*memptr != nullptr) ? 0 : ENOMEM;
}
int debug_malloc_iterate(uintptr_t base, size_t size, void (*callback)(uintptr_t, size_t, void*),
void* arg) {
ScopedConcurrentLock lock;
if (g_debug->TrackPointers()) {
PointerData::IteratePointers([&callback, &arg](uintptr_t pointer) {
callback(pointer, InternalMallocUsableSize(reinterpret_cast<void*>(pointer)), arg);
});
return 0;
}
// An option that adds a header will add pointer tracking, so no need to
// check if headers are enabled.
return g_dispatch->malloc_iterate(base, size, callback, arg);
}
void debug_malloc_disable() {
ScopedConcurrentLock lock;
g_dispatch->malloc_disable();
if (g_debug->pointer) {
g_debug->pointer->PrepareFork();
}
}
void debug_malloc_enable() {
ScopedConcurrentLock lock;
if (g_debug->pointer) {
g_debug->pointer->PostForkParent();
}
g_dispatch->malloc_enable();
}
ssize_t debug_malloc_backtrace(void* pointer, uintptr_t* frames, size_t max_frames) {
if (DebugCallsDisabled() || pointer == nullptr) {
return 0;
}
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
if (!(g_debug->config().options() & BACKTRACE)) {
return 0;
}
pointer = UntagPointer(pointer);
return PointerData::GetFrames(pointer, frames, max_frames);
}
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
void* debug_pvalloc(size_t bytes) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->pvalloc(bytes);
}
size_t pagesize = getpagesize();
size_t size = __BIONIC_ALIGN(bytes, pagesize);
if (size < bytes) {
// Overflow
errno = ENOMEM;
return nullptr;
}
return debug_memalign(pagesize, size);
}
void* debug_valloc(size_t size) {
Unreachable::CheckIfRequested(g_debug->config());
if (DebugCallsDisabled()) {
return g_dispatch->valloc(size);
}
return debug_memalign(getpagesize(), size);
}
#endif
static std::mutex g_dump_lock;
static void write_dump(int fd) {
dprintf(fd, "Android Native Heap Dump v1.2\n\n");
std::string fingerprint = android::base::GetProperty("ro.build.fingerprint", "unknown");
dprintf(fd, "Build fingerprint: '%s'\n\n", fingerprint.c_str());
PointerData::DumpLiveToFile(fd);
dprintf(fd, "MAPS\n");
std::string content;
if (!android::base::ReadFileToString("/proc/self/maps", &content)) {
dprintf(fd, "Could not open /proc/self/maps\n");
} else {
dprintf(fd, "%s", content.c_str());
}
dprintf(fd, "END\n");
// Purge the memory that was allocated and freed during this operation
// since it can be large enough to expand the RSS significantly.
g_dispatch->mallopt(M_PURGE_ALL, 0);
}
bool debug_write_malloc_leak_info(FILE* fp) {
// Make sure any pending output is written to the file.
fflush(fp);
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
std::lock_guard<std::mutex> guard(g_dump_lock);
if (!(g_debug->config().options() & BACKTRACE)) {
return false;
}
write_dump(fileno(fp));
return true;
}
void debug_dump_heap(const char* file_name) {
ScopedConcurrentLock lock;
ScopedDisableDebugCalls disable;
ScopedBacktraceSignalBlocker blocked;
std::lock_guard<std::mutex> guard(g_dump_lock);
int fd = open(file_name, O_RDWR | O_CREAT | O_NOFOLLOW | O_TRUNC | O_CLOEXEC, 0644);
if (fd == -1) {
error_log("Unable to create file: %s", file_name);
return;
}
error_log("Dumping to file: %s\n", file_name);
write_dump(fd);
close(fd);
}