platform_bionic/libc/bionic/pthread.c
2012-03-12 22:05:36 -07:00

2294 lines
70 KiB
C

/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/atomics.h>
#include <bionic_tls.h>
#include <sys/mman.h>
#include <pthread.h>
#include <time.h>
#include "pthread_internal.h"
#include "thread_private.h"
#include <limits.h>
#include <memory.h>
#include <assert.h>
#include <malloc.h>
#include <bionic_futex.h>
#include <bionic_atomic_inline.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <bionic_pthread.h>
extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
extern void _exit_thread(int retCode);
extern int __set_errno(int);
int __futex_wake_ex(volatile void *ftx, int pshared, int val)
{
return __futex_syscall3(ftx, pshared ? FUTEX_WAKE : FUTEX_WAKE_PRIVATE, val);
}
int __futex_wait_ex(volatile void *ftx, int pshared, int val, const struct timespec *timeout)
{
return __futex_syscall4(ftx, pshared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, val, timeout);
}
#define __likely(cond) __builtin_expect(!!(cond), 1)
#define __unlikely(cond) __builtin_expect(!!(cond), 0)
#ifdef __i386__
#define ATTRIBUTES __attribute__((noinline)) __attribute__((fastcall))
#else
#define ATTRIBUTES __attribute__((noinline))
#endif
void ATTRIBUTES _thread_created_hook(pid_t thread_id);
#define PTHREAD_ATTR_FLAG_DETACHED 0x00000001
#define PTHREAD_ATTR_FLAG_USER_STACK 0x00000002
#define DEFAULT_STACKSIZE (1024 * 1024)
static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
static const pthread_attr_t gDefaultPthreadAttr = {
.flags = 0,
.stack_base = NULL,
.stack_size = DEFAULT_STACKSIZE,
.guard_size = PAGE_SIZE,
.sched_policy = SCHED_NORMAL,
.sched_priority = 0
};
#define INIT_THREADS 1
static pthread_internal_t* gThreadList = NULL;
static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
/* we simply malloc/free the internal pthread_internal_t structures. we may
* want to use a different allocation scheme in the future, but this one should
* be largely enough
*/
static pthread_internal_t*
_pthread_internal_alloc(void)
{
pthread_internal_t* thread;
thread = calloc( sizeof(*thread), 1 );
if (thread)
thread->intern = 1;
return thread;
}
static void
_pthread_internal_free( pthread_internal_t* thread )
{
if (thread && thread->intern) {
thread->intern = 0; /* just in case */
free (thread);
}
}
static void
_pthread_internal_remove_locked( pthread_internal_t* thread )
{
thread->next->pref = thread->pref;
thread->pref[0] = thread->next;
}
static void
_pthread_internal_remove( pthread_internal_t* thread )
{
pthread_mutex_lock(&gThreadListLock);
_pthread_internal_remove_locked(thread);
pthread_mutex_unlock(&gThreadListLock);
}
static void
_pthread_internal_add( pthread_internal_t* thread )
{
pthread_mutex_lock(&gThreadListLock);
thread->pref = &gThreadList;
thread->next = thread->pref[0];
if (thread->next)
thread->next->pref = &thread->next;
thread->pref[0] = thread;
pthread_mutex_unlock(&gThreadListLock);
}
pthread_internal_t*
__get_thread(void)
{
void** tls = (void**)__get_tls();
return (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
}
void*
__get_stack_base(int *p_stack_size)
{
pthread_internal_t* thread = __get_thread();
*p_stack_size = thread->attr.stack_size;
return thread->attr.stack_base;
}
void __init_tls(void** tls, void* thread)
{
int nn;
((pthread_internal_t*)thread)->tls = tls;
// slot 0 must point to the tls area, this is required by the implementation
// of the x86 Linux kernel thread-local-storage
tls[TLS_SLOT_SELF] = (void*)tls;
tls[TLS_SLOT_THREAD_ID] = thread;
for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
tls[nn] = 0;
__set_tls( (void*)tls );
}
/*
* This trampoline is called from the assembly clone() function
*/
void __thread_entry(int (*func)(void*), void *arg, void **tls)
{
int retValue;
pthread_internal_t * thrInfo;
// Wait for our creating thread to release us. This lets it have time to
// notify gdb about this thread before it starts doing anything.
//
// This also provides the memory barrier needed to ensure that all memory
// accesses previously made by the creating thread are visible to us.
pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
pthread_mutex_lock(start_mutex);
pthread_mutex_destroy(start_mutex);
thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
__init_tls( tls, thrInfo );
pthread_exit( (void*)func(arg) );
}
void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
{
if (attr == NULL) {
thread->attr = gDefaultPthreadAttr;
} else {
thread->attr = *attr;
}
thread->attr.stack_base = stack_base;
thread->kernel_id = kernel_id;
// set the scheduling policy/priority of the thread
if (thread->attr.sched_policy != SCHED_NORMAL) {
struct sched_param param;
param.sched_priority = thread->attr.sched_priority;
sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
}
pthread_cond_init(&thread->join_cond, NULL);
thread->join_count = 0;
thread->cleanup_stack = NULL;
_pthread_internal_add(thread);
}
/* XXX stacks not reclaimed if thread spawn fails */
/* XXX stacks address spaces should be reused if available again */
static void *mkstack(size_t size, size_t guard_size)
{
void * stack;
pthread_mutex_lock(&mmap_lock);
stack = mmap(NULL, size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
-1, 0);
if(stack == MAP_FAILED) {
stack = NULL;
goto done;
}
if(mprotect(stack, guard_size, PROT_NONE)){
munmap(stack, size);
stack = NULL;
goto done;
}
done:
pthread_mutex_unlock(&mmap_lock);
return stack;
}
/*
* Create a new thread. The thread's stack is laid out like so:
*
* +---------------------------+
* | pthread_internal_t |
* +---------------------------+
* | |
* | TLS area |
* | |
* +---------------------------+
* | |
* . .
* . stack area .
* . .
* | |
* +---------------------------+
* | guard page |
* +---------------------------+
*
* note that TLS[0] must be a pointer to itself, this is required
* by the thread-local storage implementation of the x86 Linux
* kernel, where the TLS pointer is read by reading fs:[0]
*/
int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
void *(*start_routine)(void *), void * arg)
{
char* stack;
void** tls;
int tid;
pthread_mutex_t * start_mutex;
pthread_internal_t * thread;
int madestack = 0;
int old_errno = errno;
/* this will inform the rest of the C library that at least one thread
* was created. this will enforce certain functions to acquire/release
* locks (e.g. atexit()) to protect shared global structures.
*
* this works because pthread_create() is not called by the C library
* initialization routine that sets up the main thread's data structures.
*/
__isthreaded = 1;
thread = _pthread_internal_alloc();
if (thread == NULL)
return ENOMEM;
if (attr == NULL) {
attr = &gDefaultPthreadAttr;
}
// make sure the stack is PAGE_SIZE aligned
size_t stackSize = (attr->stack_size +
(PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
if (!attr->stack_base) {
stack = mkstack(stackSize, attr->guard_size);
if(stack == NULL) {
_pthread_internal_free(thread);
return ENOMEM;
}
madestack = 1;
} else {
stack = attr->stack_base;
}
// Make room for TLS
tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
// Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
// it from doing anything until after we notify the debugger about it
//
// This also provides the memory barrier we need to ensure that all
// memory accesses previously performed by this thread are visible to
// the new thread.
start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
pthread_mutex_init(start_mutex, NULL);
pthread_mutex_lock(start_mutex);
tls[TLS_SLOT_THREAD_ID] = thread;
tid = __pthread_clone((int(*)(void*))start_routine, tls,
CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
| CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
arg);
if(tid < 0) {
int result;
if (madestack)
munmap(stack, stackSize);
_pthread_internal_free(thread);
result = errno;
errno = old_errno;
return result;
}
_init_thread(thread, tid, (pthread_attr_t*)attr, stack);
if (!madestack)
thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
// Notify any debuggers about the new thread
pthread_mutex_lock(&gDebuggerNotificationLock);
_thread_created_hook(tid);
pthread_mutex_unlock(&gDebuggerNotificationLock);
// Let the thread do it's thing
pthread_mutex_unlock(start_mutex);
*thread_out = (pthread_t)thread;
return 0;
}
int pthread_attr_init(pthread_attr_t * attr)
{
*attr = gDefaultPthreadAttr;
return 0;
}
int pthread_attr_destroy(pthread_attr_t * attr)
{
memset(attr, 0x42, sizeof(pthread_attr_t));
return 0;
}
int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
{
if (state == PTHREAD_CREATE_DETACHED) {
attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
} else if (state == PTHREAD_CREATE_JOINABLE) {
attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
} else {
return EINVAL;
}
return 0;
}
int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
{
*state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
? PTHREAD_CREATE_DETACHED
: PTHREAD_CREATE_JOINABLE;
return 0;
}
int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
{
attr->sched_policy = policy;
return 0;
}
int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
{
*policy = attr->sched_policy;
return 0;
}
int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
{
attr->sched_priority = param->sched_priority;
return 0;
}
int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
{
param->sched_priority = attr->sched_priority;
return 0;
}
int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
{
if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
return EINVAL;
}
attr->stack_size = stack_size;
return 0;
}
int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
{
*stack_size = attr->stack_size;
return 0;
}
int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
{
#if 1
// It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
return ENOSYS;
#else
if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
return EINVAL;
}
attr->stack_base = stack_addr;
return 0;
#endif
}
int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
{
*stack_addr = (char*)attr->stack_base + attr->stack_size;
return 0;
}
int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
{
if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
return EINVAL;
}
if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
return EINVAL;
}
attr->stack_base = stack_base;
attr->stack_size = stack_size;
return 0;
}
int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
{
*stack_base = attr->stack_base;
*stack_size = attr->stack_size;
return 0;
}
int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
{
if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
return EINVAL;
}
attr->guard_size = guard_size;
return 0;
}
int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
{
*guard_size = attr->guard_size;
return 0;
}
int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
{
pthread_internal_t * thread = (pthread_internal_t *)thid;
*attr = thread->attr;
return 0;
}
int pthread_attr_setscope(pthread_attr_t *attr, int scope)
{
if (scope == PTHREAD_SCOPE_SYSTEM)
return 0;
if (scope == PTHREAD_SCOPE_PROCESS)
return ENOTSUP;
return EINVAL;
}
int pthread_attr_getscope(pthread_attr_t const *attr)
{
return PTHREAD_SCOPE_SYSTEM;
}
/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
* and thread cancelation
*/
void __pthread_cleanup_push( __pthread_cleanup_t* c,
__pthread_cleanup_func_t routine,
void* arg )
{
pthread_internal_t* thread = __get_thread();
c->__cleanup_routine = routine;
c->__cleanup_arg = arg;
c->__cleanup_prev = thread->cleanup_stack;
thread->cleanup_stack = c;
}
void __pthread_cleanup_pop( __pthread_cleanup_t* c, int execute )
{
pthread_internal_t* thread = __get_thread();
thread->cleanup_stack = c->__cleanup_prev;
if (execute)
c->__cleanup_routine(c->__cleanup_arg);
}
/* used by pthread_exit() to clean all TLS keys of the current thread */
static void pthread_key_clean_all(void);
void pthread_exit(void * retval)
{
pthread_internal_t* thread = __get_thread();
void* stack_base = thread->attr.stack_base;
int stack_size = thread->attr.stack_size;
int user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
sigset_t mask;
// call the cleanup handlers first
while (thread->cleanup_stack) {
__pthread_cleanup_t* c = thread->cleanup_stack;
thread->cleanup_stack = c->__cleanup_prev;
c->__cleanup_routine(c->__cleanup_arg);
}
// call the TLS destructors, it is important to do that before removing this
// thread from the global list. this will ensure that if someone else deletes
// a TLS key, the corresponding value will be set to NULL in this thread's TLS
// space (see pthread_key_delete)
pthread_key_clean_all();
// if the thread is detached, destroy the pthread_internal_t
// otherwise, keep it in memory and signal any joiners
if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
_pthread_internal_remove(thread);
_pthread_internal_free(thread);
} else {
/* the join_count field is used to store the number of threads waiting for
* the termination of this thread with pthread_join(),
*
* if it is positive we need to signal the waiters, and we do not touch
* the count (it will be decremented by the waiters, the last one will
* also remove/free the thread structure
*
* if it is zero, we set the count value to -1 to indicate that the
* thread is in 'zombie' state: it has stopped executing, and its stack
* is gone (as well as its TLS area). when another thread calls pthread_join()
* on it, it will immediately free the thread and return.
*/
pthread_mutex_lock(&gThreadListLock);
thread->return_value = retval;
if (thread->join_count > 0) {
pthread_cond_broadcast(&thread->join_cond);
} else {
thread->join_count = -1; /* zombie thread */
}
pthread_mutex_unlock(&gThreadListLock);
}
sigfillset(&mask);
sigdelset(&mask, SIGSEGV);
(void)sigprocmask(SIG_SETMASK, &mask, (sigset_t *)NULL);
// destroy the thread stack
if (user_stack)
_exit_thread((int)retval);
else
_exit_with_stack_teardown(stack_base, stack_size, (int)retval);
}
int pthread_join(pthread_t thid, void ** ret_val)
{
pthread_internal_t* thread = (pthread_internal_t*)thid;
int count;
// check that the thread still exists and is not detached
pthread_mutex_lock(&gThreadListLock);
for (thread = gThreadList; thread != NULL; thread = thread->next)
if (thread == (pthread_internal_t*)thid)
goto FoundIt;
pthread_mutex_unlock(&gThreadListLock);
return ESRCH;
FoundIt:
if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
pthread_mutex_unlock(&gThreadListLock);
return EINVAL;
}
/* wait for thread death when needed
*
* if the 'join_count' is negative, this is a 'zombie' thread that
* is already dead and without stack/TLS
*
* otherwise, we need to increment 'join-count' and wait to be signaled
*/
count = thread->join_count;
if (count >= 0) {
thread->join_count += 1;
pthread_cond_wait( &thread->join_cond, &gThreadListLock );
count = --thread->join_count;
}
if (ret_val)
*ret_val = thread->return_value;
/* remove thread descriptor when we're the last joiner or when the
* thread was already a zombie.
*/
if (count <= 0) {
_pthread_internal_remove_locked(thread);
_pthread_internal_free(thread);
}
pthread_mutex_unlock(&gThreadListLock);
return 0;
}
int pthread_detach( pthread_t thid )
{
pthread_internal_t* thread;
int result = 0;
int flags;
pthread_mutex_lock(&gThreadListLock);
for (thread = gThreadList; thread != NULL; thread = thread->next)
if (thread == (pthread_internal_t*)thid)
goto FoundIt;
result = ESRCH;
goto Exit;
FoundIt:
do {
flags = thread->attr.flags;
if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
/* thread is not joinable ! */
result = EINVAL;
goto Exit;
}
}
while ( __bionic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
(volatile int*)&thread->attr.flags ) != 0 );
Exit:
pthread_mutex_unlock(&gThreadListLock);
return result;
}
pthread_t pthread_self(void)
{
return (pthread_t)__get_thread();
}
int pthread_equal(pthread_t one, pthread_t two)
{
return (one == two ? 1 : 0);
}
int pthread_getschedparam(pthread_t thid, int * policy,
struct sched_param * param)
{
int old_errno = errno;
pthread_internal_t * thread = (pthread_internal_t *)thid;
int err = sched_getparam(thread->kernel_id, param);
if (!err) {
*policy = sched_getscheduler(thread->kernel_id);
} else {
err = errno;
errno = old_errno;
}
return err;
}
int pthread_setschedparam(pthread_t thid, int policy,
struct sched_param const * param)
{
pthread_internal_t * thread = (pthread_internal_t *)thid;
int old_errno = errno;
int ret;
ret = sched_setscheduler(thread->kernel_id, policy, param);
if (ret < 0) {
ret = errno;
errno = old_errno;
}
return ret;
}
/* a mutex is implemented as a 32-bit integer holding the following fields
*
* bits: name description
* 31-16 tid owner thread's kernel id (recursive and errorcheck only)
* 15-14 type mutex type
* 13 shared process-shared flag
* 12-2 counter counter of recursive mutexes
* 1-0 state lock state (0, 1 or 2)
*/
/* Convenience macro, creates a mask of 'bits' bits that starts from
* the 'shift'-th least significant bit in a 32-bit word.
*
* Examples: FIELD_MASK(0,4) -> 0xf
* FIELD_MASK(16,9) -> 0x1ff0000
*/
#define FIELD_MASK(shift,bits) (((1 << (bits))-1) << (shift))
/* This one is used to create a bit pattern from a given field value */
#define FIELD_TO_BITS(val,shift,bits) (((val) & ((1 << (bits))-1)) << (shift))
/* And this one does the opposite, i.e. extract a field's value from a bit pattern */
#define FIELD_FROM_BITS(val,shift,bits) (((val) >> (shift)) & ((1 << (bits))-1))
/* Mutex state:
*
* 0 for unlocked
* 1 for locked, no waiters
* 2 for locked, maybe waiters
*/
#define MUTEX_STATE_SHIFT 0
#define MUTEX_STATE_LEN 2
#define MUTEX_STATE_MASK FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_UNLOCKED 0 /* must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
#define MUTEX_STATE_LOCKED_UNCONTENDED 1 /* must be 1 due to atomic dec in unlock operation */
#define MUTEX_STATE_LOCKED_CONTENDED 2 /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
#define MUTEX_STATE_FROM_BITS(v) FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_TO_BITS(v) FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
#define MUTEX_STATE_BITS_UNLOCKED MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
#define MUTEX_STATE_BITS_LOCKED_UNCONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
#define MUTEX_STATE_BITS_LOCKED_CONTENDED MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
/* return true iff the mutex if locked with no waiters */
#define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
/* return true iff the mutex if locked with maybe waiters */
#define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
/* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
#define MUTEX_STATE_BITS_FLIP_CONTENTION(v) ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
/* Mutex counter:
*
* We need to check for overflow before incrementing, and we also need to
* detect when the counter is 0
*/
#define MUTEX_COUNTER_SHIFT 2
#define MUTEX_COUNTER_LEN 11
#define MUTEX_COUNTER_MASK FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
#define MUTEX_COUNTER_BITS_WILL_OVERFLOW(v) (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
#define MUTEX_COUNTER_BITS_IS_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
/* Used to increment the counter directly after overflow has been checked */
#define MUTEX_COUNTER_BITS_ONE FIELD_TO_BITS(1,MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
/* Returns true iff the counter is 0 */
#define MUTEX_COUNTER_BITS_ARE_ZERO(v) (((v) & MUTEX_COUNTER_MASK) == 0)
/* Mutex shared bit flag
*
* This flag is set to indicate that the mutex is shared among processes.
* This changes the futex opcode we use for futex wait/wake operations
* (non-shared operations are much faster).
*/
#define MUTEX_SHARED_SHIFT 13
#define MUTEX_SHARED_MASK FIELD_MASK(MUTEX_SHARED_SHIFT,1)
/* Mutex type:
*
* We support normal, recursive and errorcheck mutexes.
*
* The constants defined here *cannot* be changed because they must match
* the C library ABI which defines the following initialization values in
* <pthread.h>:
*
* __PTHREAD_MUTEX_INIT_VALUE
* __PTHREAD_RECURSIVE_MUTEX_VALUE
* __PTHREAD_ERRORCHECK_MUTEX_INIT_VALUE
*/
#define MUTEX_TYPE_SHIFT 14
#define MUTEX_TYPE_LEN 2
#define MUTEX_TYPE_MASK FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
#define MUTEX_TYPE_NORMAL 0 /* Must be 0 to match __PTHREAD_MUTEX_INIT_VALUE */
#define MUTEX_TYPE_RECURSIVE 1
#define MUTEX_TYPE_ERRORCHECK 2
#define MUTEX_TYPE_TO_BITS(t) FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
#define MUTEX_TYPE_BITS_NORMAL MUTEX_TYPE_TO_BITS(MUTEX_TYPE_NORMAL)
#define MUTEX_TYPE_BITS_RECURSIVE MUTEX_TYPE_TO_BITS(MUTEX_TYPE_RECURSIVE)
#define MUTEX_TYPE_BITS_ERRORCHECK MUTEX_TYPE_TO_BITS(MUTEX_TYPE_ERRORCHECK)
/* Mutex owner field:
*
* This is only used for recursive and errorcheck mutexes. It holds the
* kernel TID of the owning thread. Note that this works because the Linux
* kernel _only_ uses 16-bit values for thread ids.
*
* More specifically, it will wrap to 10000 when it reaches over 32768 for
* application processes. You can check this by running the following inside
* an adb shell session:
*
OLDPID=$$;
while true; do
NEWPID=$(sh -c 'echo $$')
if [ "$NEWPID" -gt 32768 ]; then
echo "AARGH: new PID $NEWPID is too high!"
exit 1
fi
if [ "$NEWPID" -lt "$OLDPID" ]; then
echo "****** Wrapping from PID $OLDPID to $NEWPID. *******"
else
echo -n "$NEWPID!"
fi
OLDPID=$NEWPID
done
* Note that you can run the same example on a desktop Linux system,
* the wrapping will also happen at 32768, but will go back to 300 instead.
*/
#define MUTEX_OWNER_SHIFT 16
#define MUTEX_OWNER_LEN 16
#define MUTEX_OWNER_FROM_BITS(v) FIELD_FROM_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
#define MUTEX_OWNER_TO_BITS(v) FIELD_TO_BITS(v,MUTEX_OWNER_SHIFT,MUTEX_OWNER_LEN)
/* Convenience macros.
*
* These are used to form or modify the bit pattern of a given mutex value
*/
/* a mutex attribute holds the following fields
*
* bits: name description
* 0-3 type type of mutex
* 4 shared process-shared flag
*/
#define MUTEXATTR_TYPE_MASK 0x000f
#define MUTEXATTR_SHARED_MASK 0x0010
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
if (attr) {
*attr = PTHREAD_MUTEX_DEFAULT;
return 0;
} else {
return EINVAL;
}
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (attr) {
*attr = -1;
return 0;
} else {
return EINVAL;
}
}
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
{
if (attr) {
int atype = (*attr & MUTEXATTR_TYPE_MASK);
if (atype >= PTHREAD_MUTEX_NORMAL &&
atype <= PTHREAD_MUTEX_ERRORCHECK) {
*type = atype;
return 0;
}
}
return EINVAL;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (attr && type >= PTHREAD_MUTEX_NORMAL &&
type <= PTHREAD_MUTEX_ERRORCHECK ) {
*attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
return 0;
}
return EINVAL;
}
/* process-shared mutexes are not supported at the moment */
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
{
if (!attr)
return EINVAL;
switch (pshared) {
case PTHREAD_PROCESS_PRIVATE:
*attr &= ~MUTEXATTR_SHARED_MASK;
return 0;
case PTHREAD_PROCESS_SHARED:
/* our current implementation of pthread actually supports shared
* mutexes but won't cleanup if a process dies with the mutex held.
* Nevertheless, it's better than nothing. Shared mutexes are used
* by surfaceflinger and audioflinger.
*/
*attr |= MUTEXATTR_SHARED_MASK;
return 0;
}
return EINVAL;
}
int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
{
if (!attr || !pshared)
return EINVAL;
*pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED
: PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)
{
int value = 0;
if (mutex == NULL)
return EINVAL;
if (__likely(attr == NULL)) {
mutex->value = MUTEX_TYPE_BITS_NORMAL;
return 0;
}
if ((*attr & MUTEXATTR_SHARED_MASK) != 0)
value |= MUTEX_SHARED_MASK;
switch (*attr & MUTEXATTR_TYPE_MASK) {
case PTHREAD_MUTEX_NORMAL:
value |= MUTEX_TYPE_BITS_NORMAL;
break;
case PTHREAD_MUTEX_RECURSIVE:
value |= MUTEX_TYPE_BITS_RECURSIVE;
break;
case PTHREAD_MUTEX_ERRORCHECK:
value |= MUTEX_TYPE_BITS_ERRORCHECK;
break;
default:
return EINVAL;
}
mutex->value = value;
return 0;
}
/*
* Lock a non-recursive mutex.
*
* As noted above, there are three states:
* 0 (unlocked, no contention)
* 1 (locked, no contention)
* 2 (locked, contention)
*
* Non-recursive mutexes don't use the thread-id or counter fields, and the
* "type" value is zero, so the only bits that will be set are the ones in
* the lock state field.
*/
static __inline__ void
_normal_lock(pthread_mutex_t* mutex, int shared)
{
/* convenience shortcuts */
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
/*
* The common case is an unlocked mutex, so we begin by trying to
* change the lock's state from 0 (UNLOCKED) to 1 (LOCKED).
* __bionic_cmpxchg() returns 0 if it made the swap successfully.
* If the result is nonzero, this lock is already held by another thread.
*/
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) != 0) {
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
/*
* We want to go to sleep until the mutex is available, which
* requires promoting it to state 2 (CONTENDED). We need to
* swap in the new state value and then wait until somebody wakes us up.
*
* __bionic_swap() returns the previous value. We swap 2 in and
* see if we got zero back; if so, we have acquired the lock. If
* not, another thread still holds the lock and we wait again.
*
* The second argument to the __futex_wait() call is compared
* against the current value. If it doesn't match, __futex_wait()
* returns immediately (otherwise, it sleeps for a time specified
* by the third argument; 0 means sleep forever). This ensures
* that the mutex is in state 2 when we go to sleep on it, which
* guarantees a wake-up call.
*/
while (__bionic_swap(locked_contended, &mutex->value) != unlocked)
__futex_wait_ex(&mutex->value, shared, locked_contended, 0);
}
ANDROID_MEMBAR_FULL();
}
/*
* Release a non-recursive mutex. The caller is responsible for determining
* that we are in fact the owner of this lock.
*/
static __inline__ void
_normal_unlock(pthread_mutex_t* mutex, int shared)
{
ANDROID_MEMBAR_FULL();
/*
* The mutex state will be 1 or (rarely) 2. We use an atomic decrement
* to release the lock. __bionic_atomic_dec() returns the previous value;
* if it wasn't 1 we have to do some additional work.
*/
if (__bionic_atomic_dec(&mutex->value) != (shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED)) {
/*
* Start by releasing the lock. The decrement changed it from
* "contended lock" to "uncontended lock", which means we still
* hold it, and anybody who tries to sneak in will push it back
* to state 2.
*
* Once we set it to zero the lock is up for grabs. We follow
* this with a __futex_wake() to ensure that one of the waiting
* threads has a chance to grab it.
*
* This doesn't cause a race with the swap/wait pair in
* _normal_lock(), because the __futex_wait() call there will
* return immediately if the mutex value isn't 2.
*/
mutex->value = shared;
/*
* Wake up one waiting thread. We don't know which thread will be
* woken or when it'll start executing -- futexes make no guarantees
* here. There may not even be a thread waiting.
*
* The newly-woken thread will replace the 0 we just set above
* with 2, which means that when it eventually releases the mutex
* it will also call FUTEX_WAKE. This results in one extra wake
* call whenever a lock is contended, but lets us avoid forgetting
* anyone without requiring us to track the number of sleepers.
*
* It's possible for another thread to sneak in and grab the lock
* between the zero assignment above and the wake call below. If
* the new thread is "slow" and holds the lock for a while, we'll
* wake up a sleeper, which will swap in a 2 and then go back to
* sleep since the lock is still held. If the new thread is "fast",
* running to completion before we call wake, the thread we
* eventually wake will find an unlocked mutex and will execute.
* Either way we have correct behavior and nobody is orphaned on
* the wait queue.
*/
__futex_wake_ex(&mutex->value, shared, 1);
}
}
/* This common inlined function is used to increment the counter of an
* errorcheck or recursive mutex.
*
* For errorcheck mutexes, it will return EDEADLK
* If the counter overflows, it will return EAGAIN
* Otherwise, it atomically increments the counter and returns 0
* after providing an acquire barrier.
*
* mtype is the current mutex type
* mvalue is the current mutex value (already loaded)
* mutex pointers to the mutex.
*/
static __inline__ __attribute__((always_inline)) int
_recursive_increment(pthread_mutex_t* mutex, int mvalue, int mtype)
{
if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
/* trying to re-lock a mutex we already acquired */
return EDEADLK;
}
/* Detect recursive lock overflow and return EAGAIN.
* This is safe because only the owner thread can modify the
* counter bits in the mutex value.
*/
if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(mvalue)) {
return EAGAIN;
}
/* We own the mutex, but other threads are able to change
* the lower bits (e.g. promoting it to "contended"), so we
* need to use an atomic cmpxchg loop to update the counter.
*/
for (;;) {
/* increment counter, overflow was already checked */
int newval = mvalue + MUTEX_COUNTER_BITS_ONE;
if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
/* mutex is still locked, not need for a memory barrier */
return 0;
}
/* the value was changed, this happens when another thread changes
* the lower state bits from 1 to 2 to indicate contention. This
* cannot change the counter, so simply reload and try again.
*/
mvalue = mutex->value;
}
}
__LIBC_HIDDEN__
int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
{
int mvalue, mtype, tid, new_lock_type, shared;
if (__unlikely(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle normal case first */
if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
_normal_lock(mutex, shared);
return 0;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
return _recursive_increment(mutex, mvalue, mtype);
/* Add in shared state to avoid extra 'or' operations below */
mtype |= shared;
/* First, if the mutex is unlocked, try to quickly acquire it.
* In the optimistic case where this works, set the state to 1 to
* indicate locked with no contention */
if (mvalue == mtype) {
int newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
/* argh, the value changed, reload before entering the loop */
mvalue = mutex->value;
}
for (;;) {
int newval;
/* if the mutex is unlocked, its value should be 'mtype' and
* we try to acquire it by setting its owner and state atomically.
* NOTE: We put the state to 2 since we _know_ there is contention
* when we are in this loop. This ensures all waiters will be
* unlocked.
*/
if (mvalue == mtype) {
newval = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
/* TODO: Change this to __bionic_cmpxchg_acquire when we
* implement it to get rid of the explicit memory
* barrier below.
*/
if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
mvalue = mutex->value;
continue;
}
ANDROID_MEMBAR_FULL();
return 0;
}
/* the mutex is already locked by another thread, if its state is 1
* we will change it to 2 to indicate contention. */
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue); /* locked state 1 => state 2 */
if (__unlikely(__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0)) {
mvalue = mutex->value;
continue;
}
mvalue = newval;
}
/* wait until the mutex is unlocked */
__futex_wait_ex(&mutex->value, shared, mvalue, NULL);
mvalue = mutex->value;
}
/* NOTREACHED */
}
int pthread_mutex_lock(pthread_mutex_t *mutex)
{
int err = pthread_mutex_lock_impl(mutex);
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
if (!err) {
pthread_debug_mutex_lock_check(mutex);
}
}
#endif
return err;
}
__LIBC_HIDDEN__
int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
{
int mvalue, mtype, tid, oldv, shared;
if (__unlikely(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle common case first */
if (__likely(mtype == MUTEX_TYPE_BITS_NORMAL)) {
_normal_unlock(mutex, shared);
return 0;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid != MUTEX_OWNER_FROM_BITS(mvalue) )
return EPERM;
/* If the counter is > 0, we can simply decrement it atomically.
* Since other threads can mutate the lower state bits (and only the
* lower state bits), use a cmpxchg to do it.
*/
if (!MUTEX_COUNTER_BITS_IS_ZERO(mvalue)) {
for (;;) {
int newval = mvalue - MUTEX_COUNTER_BITS_ONE;
if (__likely(__bionic_cmpxchg(mvalue, newval, &mutex->value) == 0)) {
/* success: we still own the mutex, so no memory barrier */
return 0;
}
/* the value changed, so reload and loop */
mvalue = mutex->value;
}
}
/* the counter is 0, so we're going to unlock the mutex by resetting
* its value to 'unlocked'. We need to perform a swap in order
* to read the current state, which will be 2 if there are waiters
* to awake.
*
* TODO: Change this to __bionic_swap_release when we implement it
* to get rid of the explicit memory barrier below.
*/
ANDROID_MEMBAR_FULL(); /* RELEASE BARRIER */
mvalue = __bionic_swap(mtype | shared | MUTEX_STATE_BITS_UNLOCKED, &mutex->value);
/* Wake one waiting thread, if any */
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
__futex_wake_ex(&mutex->value, shared, 1);
}
return 0;
}
int pthread_mutex_unlock(pthread_mutex_t *mutex)
{
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
pthread_debug_mutex_unlock_check(mutex);
}
#endif
return pthread_mutex_unlock_impl(mutex);
}
__LIBC_HIDDEN__
int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
{
int mvalue, mtype, tid, oldv, shared;
if (__unlikely(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle common case first */
if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
{
if (__bionic_cmpxchg(shared|MUTEX_STATE_BITS_UNLOCKED,
shared|MUTEX_STATE_BITS_LOCKED_UNCONTENDED,
&mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
return EBUSY;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
return _recursive_increment(mutex, mvalue, mtype);
/* Same as pthread_mutex_lock, except that we don't want to wait, and
* the only operation that can succeed is a single cmpxchg to acquire the
* lock if it is released / not owned by anyone. No need for a complex loop.
*/
mtype |= shared | MUTEX_STATE_BITS_UNLOCKED;
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
ANDROID_MEMBAR_FULL();
return 0;
}
return EBUSY;
}
int pthread_mutex_trylock(pthread_mutex_t *mutex)
{
int err = pthread_mutex_trylock_impl(mutex);
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
if (!err) {
pthread_debug_mutex_lock_check(mutex);
}
}
#endif
return err;
}
/* initialize 'ts' with the difference between 'abstime' and the current time
* according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
*/
static int
__timespec_to_absolute(struct timespec* ts, const struct timespec* abstime, clockid_t clock)
{
clock_gettime(clock, ts);
ts->tv_sec = abstime->tv_sec - ts->tv_sec;
ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
if (ts->tv_nsec < 0) {
ts->tv_sec--;
ts->tv_nsec += 1000000000;
}
if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
return -1;
return 0;
}
/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
* milliseconds.
*/
static void
__timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_t clock)
{
clock_gettime(clock, abstime);
abstime->tv_sec += msecs/1000;
abstime->tv_nsec += (msecs%1000)*1000000;
if (abstime->tv_nsec >= 1000000000) {
abstime->tv_sec++;
abstime->tv_nsec -= 1000000000;
}
}
__LIBC_HIDDEN__
int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
{
clockid_t clock = CLOCK_MONOTONIC;
struct timespec abstime;
struct timespec ts;
int mvalue, mtype, tid, oldv, new_lock_type, shared;
/* compute absolute expiration time */
__timespec_to_relative_msec(&abstime, msecs, clock);
if (__unlikely(mutex == NULL))
return EINVAL;
mvalue = mutex->value;
mtype = (mvalue & MUTEX_TYPE_MASK);
shared = (mvalue & MUTEX_SHARED_MASK);
/* Handle common case first */
if ( __likely(mtype == MUTEX_TYPE_BITS_NORMAL) )
{
const int unlocked = shared | MUTEX_STATE_BITS_UNLOCKED;
const int locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
const int locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
/* fast path for uncontended lock. Note: MUTEX_TYPE_BITS_NORMAL is 0 */
if (__bionic_cmpxchg(unlocked, locked_uncontended, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
/* loop while needed */
while (__bionic_swap(locked_contended, &mutex->value) != unlocked) {
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;
__futex_wait_ex(&mutex->value, shared, locked_contended, &ts);
}
ANDROID_MEMBAR_FULL();
return 0;
}
/* Do we already own this recursive or error-check mutex ? */
tid = __get_thread()->kernel_id;
if ( tid == MUTEX_OWNER_FROM_BITS(mvalue) )
return _recursive_increment(mutex, mvalue, mtype);
/* the following implements the same loop than pthread_mutex_lock_impl
* but adds checks to ensure that the operation never exceeds the
* absolute expiration time.
*/
mtype |= shared;
/* first try a quick lock */
if (mvalue == mtype) {
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
if (__likely(__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0)) {
ANDROID_MEMBAR_FULL();
return 0;
}
mvalue = mutex->value;
}
for (;;) {
struct timespec ts;
/* if the value is 'unlocked', try to acquire it directly */
/* NOTE: put state to 2 since we know there is contention */
if (mvalue == mtype) /* unlocked */ {
mvalue = MUTEX_OWNER_TO_BITS(tid) | mtype | MUTEX_STATE_BITS_LOCKED_CONTENDED;
if (__bionic_cmpxchg(mtype, mvalue, &mutex->value) == 0) {
ANDROID_MEMBAR_FULL();
return 0;
}
/* the value changed before we could lock it. We need to check
* the time to avoid livelocks, reload the value, then loop again. */
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;
mvalue = mutex->value;
continue;
}
/* The value is locked. If 'uncontended', try to switch its state
* to 'contented' to ensure we get woken up later. */
if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(mvalue)) {
int newval = MUTEX_STATE_BITS_FLIP_CONTENTION(mvalue);
if (__bionic_cmpxchg(mvalue, newval, &mutex->value) != 0) {
/* this failed because the value changed, reload it */
mvalue = mutex->value;
} else {
/* this succeeded, update mvalue */
mvalue = newval;
}
}
/* check time and update 'ts' */
if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
return EBUSY;
/* Only wait to be woken up if the state is '2', otherwise we'll
* simply loop right now. This can happen when the second cmpxchg
* in our loop failed because the mutex was unlocked by another
* thread.
*/
if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(mvalue)) {
if (__futex_wait_ex(&mutex->value, shared, mvalue, &ts) == ETIMEDOUT) {
return EBUSY;
}
mvalue = mutex->value;
}
}
/* NOTREACHED */
}
int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
{
int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
#ifdef PTHREAD_DEBUG
if (PTHREAD_DEBUG_ENABLED) {
if (!err) {
pthread_debug_mutex_lock_check(mutex);
}
}
#endif
return err;
}
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
int ret;
/* use trylock to ensure that the mutex value is
* valid and is not already locked. */
ret = pthread_mutex_trylock_impl(mutex);
if (ret != 0)
return ret;
mutex->value = 0xdead10cc;
return 0;
}
int pthread_condattr_init(pthread_condattr_t *attr)
{
if (attr == NULL)
return EINVAL;
*attr = PTHREAD_PROCESS_PRIVATE;
return 0;
}
int pthread_condattr_getpshared(pthread_condattr_t *attr, int *pshared)
{
if (attr == NULL || pshared == NULL)
return EINVAL;
*pshared = *attr;
return 0;
}
int pthread_condattr_setpshared(pthread_condattr_t *attr, int pshared)
{
if (attr == NULL)
return EINVAL;
if (pshared != PTHREAD_PROCESS_SHARED &&
pshared != PTHREAD_PROCESS_PRIVATE)
return EINVAL;
*attr = pshared;
return 0;
}
int pthread_condattr_destroy(pthread_condattr_t *attr)
{
if (attr == NULL)
return EINVAL;
*attr = 0xdeada11d;
return 0;
}
/* We use one bit in condition variable values as the 'shared' flag
* The rest is a counter.
*/
#define COND_SHARED_MASK 0x0001
#define COND_COUNTER_INCREMENT 0x0002
#define COND_COUNTER_MASK (~COND_SHARED_MASK)
#define COND_IS_SHARED(c) (((c)->value & COND_SHARED_MASK) != 0)
/* XXX *technically* there is a race condition that could allow
* XXX a signal to be missed. If thread A is preempted in _wait()
* XXX after unlocking the mutex and before waiting, and if other
* XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
* XXX before thread A is scheduled again and calls futex_wait(),
* XXX then the signal will be lost.
*/
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)
{
if (cond == NULL)
return EINVAL;
cond->value = 0;
if (attr != NULL && *attr == PTHREAD_PROCESS_SHARED)
cond->value |= COND_SHARED_MASK;
return 0;
}
int pthread_cond_destroy(pthread_cond_t *cond)
{
if (cond == NULL)
return EINVAL;
cond->value = 0xdeadc04d;
return 0;
}
/* This function is used by pthread_cond_broadcast and
* pthread_cond_signal to atomically decrement the counter
* then wake-up 'counter' threads.
*/
static int
__pthread_cond_pulse(pthread_cond_t *cond, int counter)
{
long flags;
if (__unlikely(cond == NULL))
return EINVAL;
flags = (cond->value & ~COND_COUNTER_MASK);
for (;;) {
long oldval = cond->value;
long newval = ((oldval - COND_COUNTER_INCREMENT) & COND_COUNTER_MASK)
| flags;
if (__bionic_cmpxchg(oldval, newval, &cond->value) == 0)
break;
}
/*
* Ensure that all memory accesses previously made by this thread are
* visible to the woken thread(s). On the other side, the "wait"
* code will issue any necessary barriers when locking the mutex.
*
* This may not strictly be necessary -- if the caller follows
* recommended practice and holds the mutex before signaling the cond
* var, the mutex ops will provide correct semantics. If they don't
* hold the mutex, they're subject to race conditions anyway.
*/
ANDROID_MEMBAR_FULL();
__futex_wake_ex(&cond->value, COND_IS_SHARED(cond), counter);
return 0;
}
int pthread_cond_broadcast(pthread_cond_t *cond)
{
return __pthread_cond_pulse(cond, INT_MAX);
}
int pthread_cond_signal(pthread_cond_t *cond)
{
return __pthread_cond_pulse(cond, 1);
}
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
return pthread_cond_timedwait(cond, mutex, NULL);
}
int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *reltime)
{
int status;
int oldvalue = cond->value;
pthread_mutex_unlock(mutex);
status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond), oldvalue, reltime);
pthread_mutex_lock(mutex);
if (status == (-ETIMEDOUT)) return ETIMEDOUT;
return 0;
}
int __pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime,
clockid_t clock)
{
struct timespec ts;
struct timespec * tsp;
if (abstime != NULL) {
if (__timespec_to_absolute(&ts, abstime, clock) < 0)
return ETIMEDOUT;
tsp = &ts;
} else {
tsp = NULL;
}
return __pthread_cond_timedwait_relative(cond, mutex, tsp);
}
int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime)
{
return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
}
/* this one exists only for backward binary compatibility */
int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime)
{
return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
}
int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *abstime)
{
return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
}
int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
pthread_mutex_t * mutex,
const struct timespec *reltime)
{
return __pthread_cond_timedwait_relative(cond, mutex, reltime);
}
int pthread_cond_timeout_np(pthread_cond_t *cond,
pthread_mutex_t * mutex,
unsigned msecs)
{
struct timespec ts;
ts.tv_sec = msecs / 1000;
ts.tv_nsec = (msecs % 1000) * 1000000;
return __pthread_cond_timedwait_relative(cond, mutex, &ts);
}
/* A technical note regarding our thread-local-storage (TLS) implementation:
*
* There can be up to TLSMAP_SIZE independent TLS keys in a given process,
* though the first TLSMAP_START keys are reserved for Bionic to hold
* special thread-specific variables like errno or a pointer to
* the current thread's descriptor.
*
* while stored in the TLS area, these entries cannot be accessed through
* pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
*
* also, some entries in the key table are pre-allocated (see tlsmap_lock)
* to greatly simplify and speedup some OpenGL-related operations. though the
* initialy value will be NULL on all threads.
*
* you can use pthread_getspecific()/setspecific() on these, and in theory
* you could also call pthread_key_delete() as well, though this would
* probably break some apps.
*
* The 'tlsmap_t' type defined below implements a shared global map of
* currently created/allocated TLS keys and the destructors associated
* with them. You should use tlsmap_lock/unlock to access it to avoid
* any race condition.
*
* the global TLS map simply contains a bitmap of allocated keys, and
* an array of destructors.
*
* each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
* pointers. the TLS area of the main thread is stack-allocated in
* __libc_init_common, while the TLS area of other threads is placed at
* the top of their stack in pthread_create.
*
* when pthread_key_create() is called, it finds the first free key in the
* bitmap, then set it to 1, saving the destructor altogether
*
* when pthread_key_delete() is called. it will erase the key's bitmap bit
* and its destructor, and will also clear the key data in the TLS area of
* all created threads. As mandated by Posix, it is the responsability of
* the caller of pthread_key_delete() to properly reclaim the objects that
* were pointed to by these data fields (either before or after the call).
*
*/
/* TLS Map implementation
*/
#define TLSMAP_START (TLS_SLOT_MAX_WELL_KNOWN+1)
#define TLSMAP_SIZE BIONIC_TLS_SLOTS
#define TLSMAP_BITS 32
#define TLSMAP_WORDS ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
#define TLSMAP_WORD(m,k) (m)->map[(k)/TLSMAP_BITS]
#define TLSMAP_MASK(k) (1U << ((k)&(TLSMAP_BITS-1)))
/* this macro is used to quickly check that a key belongs to a reasonable range */
#define TLSMAP_VALIDATE_KEY(key) \
((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
/* the type of tls key destructor functions */
typedef void (*tls_dtor_t)(void*);
typedef struct {
int init; /* see comment in tlsmap_lock() */
uint32_t map[TLSMAP_WORDS]; /* bitmap of allocated keys */
tls_dtor_t dtors[TLSMAP_SIZE]; /* key destructors */
} tlsmap_t;
static pthread_mutex_t _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
static tlsmap_t _tlsmap;
/* lock the global TLS map lock and return a handle to it */
static __inline__ tlsmap_t* tlsmap_lock(void)
{
tlsmap_t* m = &_tlsmap;
pthread_mutex_lock(&_tlsmap_lock);
/* we need to initialize the first entry of the 'map' array
* with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
* when declaring _tlsmap is a bit awkward and is going to
* produce warnings, so do it the first time we use the map
* instead
*/
if (__unlikely(!m->init)) {
TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
m->init = 1;
}
return m;
}
/* unlock the global TLS map */
static __inline__ void tlsmap_unlock(tlsmap_t* m)
{
pthread_mutex_unlock(&_tlsmap_lock);
(void)m; /* a good compiler is a happy compiler */
}
/* test to see wether a key is allocated */
static __inline__ int tlsmap_test(tlsmap_t* m, int key)
{
return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
}
/* set the destructor and bit flag on a newly allocated key */
static __inline__ void tlsmap_set(tlsmap_t* m, int key, tls_dtor_t dtor)
{
TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
m->dtors[key] = dtor;
}
/* clear the destructor and bit flag on an existing key */
static __inline__ void tlsmap_clear(tlsmap_t* m, int key)
{
TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
m->dtors[key] = NULL;
}
/* allocate a new TLS key, return -1 if no room left */
static int tlsmap_alloc(tlsmap_t* m, tls_dtor_t dtor)
{
int key;
for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
if ( !tlsmap_test(m, key) ) {
tlsmap_set(m, key, dtor);
return key;
}
}
return -1;
}
int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
{
uint32_t err = ENOMEM;
tlsmap_t* map = tlsmap_lock();
int k = tlsmap_alloc(map, destructor_function);
if (k >= 0) {
*key = k;
err = 0;
}
tlsmap_unlock(map);
return err;
}
/* This deletes a pthread_key_t. note that the standard mandates that this does
* not call the destructor of non-NULL key values. Instead, it is the
* responsability of the caller to properly dispose of the corresponding data
* and resources, using any mean it finds suitable.
*
* On the other hand, this function will clear the corresponding key data
* values in all known threads. this prevents later (invalid) calls to
* pthread_getspecific() to receive invalid/stale values.
*/
int pthread_key_delete(pthread_key_t key)
{
uint32_t err;
pthread_internal_t* thr;
tlsmap_t* map;
if (!TLSMAP_VALIDATE_KEY(key)) {
return EINVAL;
}
map = tlsmap_lock();
if (!tlsmap_test(map, key)) {
err = EINVAL;
goto err1;
}
/* clear value in all threads */
pthread_mutex_lock(&gThreadListLock);
for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
/* avoid zombie threads with a negative 'join_count'. these are really
* already dead and don't have a TLS area anymore.
*
* similarly, it is possible to have thr->tls == NULL for threads that
* were just recently created through pthread_create() but whose
* startup trampoline (__thread_entry) hasn't been run yet by the
* scheduler. so check for this too.
*/
if (thr->join_count < 0 || !thr->tls)
continue;
thr->tls[key] = NULL;
}
tlsmap_clear(map, key);
pthread_mutex_unlock(&gThreadListLock);
err = 0;
err1:
tlsmap_unlock(map);
return err;
}
int pthread_setspecific(pthread_key_t key, const void *ptr)
{
int err = EINVAL;
tlsmap_t* map;
if (TLSMAP_VALIDATE_KEY(key)) {
/* check that we're trying to set data for an allocated key */
map = tlsmap_lock();
if (tlsmap_test(map, key)) {
((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
err = 0;
}
tlsmap_unlock(map);
}
return err;
}
void * pthread_getspecific(pthread_key_t key)
{
if (!TLSMAP_VALIDATE_KEY(key)) {
return NULL;
}
/* for performance reason, we do not lock/unlock the global TLS map
* to check that the key is properly allocated. if the key was not
* allocated, the value read from the TLS should always be NULL
* due to pthread_key_delete() clearing the values for all threads.
*/
return (void *)(((unsigned *)__get_tls())[key]);
}
/* Posix mandates that this be defined in <limits.h> but we don't have
* it just yet.
*/
#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
# define PTHREAD_DESTRUCTOR_ITERATIONS 4
#endif
/* this function is called from pthread_exit() to remove all TLS key data
* from this thread's TLS area. this must call the destructor of all keys
* that have a non-NULL data value (and a non-NULL destructor).
*
* because destructors can do funky things like deleting/creating other
* keys, we need to implement this in a loop
*/
static void pthread_key_clean_all(void)
{
tlsmap_t* map;
void** tls = (void**)__get_tls();
int rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
map = tlsmap_lock();
for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
{
int kk, count = 0;
for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
if ( tlsmap_test(map, kk) )
{
void* data = tls[kk];
tls_dtor_t dtor = map->dtors[kk];
if (data != NULL && dtor != NULL)
{
/* we need to clear the key data now, this will prevent the
* destructor (or a later one) from seeing the old value if
* it calls pthread_getspecific() for some odd reason
*
* we do not do this if 'dtor == NULL' just in case another
* destructor function might be responsible for manually
* releasing the corresponding data.
*/
tls[kk] = NULL;
/* because the destructor is free to call pthread_key_create
* and/or pthread_key_delete, we need to temporarily unlock
* the TLS map
*/
tlsmap_unlock(map);
(*dtor)(data);
map = tlsmap_lock();
count += 1;
}
}
}
/* if we didn't call any destructor, there is no need to check the
* TLS data again
*/
if (count == 0)
break;
}
tlsmap_unlock(map);
}
// man says this should be in <linux/unistd.h>, but it isn't
extern int tgkill(int tgid, int tid, int sig);
int pthread_kill(pthread_t tid, int sig)
{
int ret;
int old_errno = errno;
pthread_internal_t * thread = (pthread_internal_t *)tid;
ret = tgkill(getpid(), thread->kernel_id, sig);
if (ret < 0) {
ret = errno;
errno = old_errno;
}
return ret;
}
/* Despite the fact that our kernel headers define sigset_t explicitly
* as a 32-bit integer, the kernel system call really expects a 64-bit
* bitmap for the signal set, or more exactly an array of two-32-bit
* values (see $KERNEL/arch/$ARCH/include/asm/signal.h for details).
*
* Unfortunately, we cannot fix the sigset_t definition without breaking
* the C library ABI, so perform a little runtime translation here.
*/
typedef union {
sigset_t bionic;
uint32_t kernel[2];
} kernel_sigset_t;
/* this is a private syscall stub */
extern int __rt_sigprocmask(int, const kernel_sigset_t *, kernel_sigset_t *, size_t);
int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
{
/* pthread_sigmask must return the error code, but the syscall
* will set errno instead and return 0/-1
*/
int ret, old_errno = errno;
/* We must convert *set into a kernel_sigset_t */
kernel_sigset_t in_set, *in_set_ptr;
kernel_sigset_t out_set;
in_set.kernel[0] = in_set.kernel[1] = 0;
out_set.kernel[0] = out_set.kernel[1] = 0;
/* 'in_set_ptr' is the second parameter to __rt_sigprocmask. It must be NULL
* if 'set' is NULL to ensure correct semantics (which in this case would
* be to ignore 'how' and return the current signal set into 'oset'.
*/
if (set == NULL) {
in_set_ptr = NULL;
} else {
in_set.bionic = *set;
in_set_ptr = &in_set;
}
ret = __rt_sigprocmask(how, in_set_ptr, &out_set, sizeof(kernel_sigset_t));
if (ret < 0)
ret = errno;
if (oset)
*oset = out_set.bionic;
errno = old_errno;
return ret;
}
int pthread_getcpuclockid(pthread_t tid, clockid_t *clockid)
{
const int CLOCK_IDTYPE_BITS = 3;
pthread_internal_t* thread = (pthread_internal_t*)tid;
if (!thread)
return ESRCH;
*clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
return 0;
}
/* NOTE: this implementation doesn't support a init function that throws a C++ exception
* or calls fork()
*/
int pthread_once( pthread_once_t* once_control, void (*init_routine)(void) )
{
static pthread_mutex_t once_lock = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
volatile pthread_once_t* ocptr = once_control;
pthread_once_t value;
/* PTHREAD_ONCE_INIT is 0, we use the following bit flags
*
* bit 0 set -> initialization is under way
* bit 1 set -> initialization is complete
*/
#define ONCE_INITIALIZING (1 << 0)
#define ONCE_COMPLETED (1 << 1)
/* First check if the once is already initialized. This will be the common
* case and we want to make this as fast as possible. Note that this still
* requires a load_acquire operation here to ensure that all the
* stores performed by the initialization function are observable on
* this CPU after we exit.
*/
if (__likely((*ocptr & ONCE_COMPLETED) != 0)) {
ANDROID_MEMBAR_FULL();
return 0;
}
for (;;) {
/* Try to atomically set the INITIALIZING flag.
* This requires a cmpxchg loop, and we may need
* to exit prematurely if we detect that
* COMPLETED is now set.
*/
int32_t oldval, newval;
do {
oldval = *ocptr;
if ((oldval & ONCE_COMPLETED) != 0)
break;
newval = oldval | ONCE_INITIALIZING;
} while (__bionic_cmpxchg(oldval, newval, ocptr) != 0);
if ((oldval & ONCE_COMPLETED) != 0) {
/* We detected that COMPLETED was set while in our loop */
ANDROID_MEMBAR_FULL();
return 0;
}
if ((oldval & ONCE_INITIALIZING) == 0) {
/* We got there first, we can jump out of the loop to
* handle the initialization */
break;
}
/* Another thread is running the initialization and hasn't completed
* yet, so wait for it, then try again. */
__futex_wait_ex(ocptr, 0, oldval, NULL);
}
/* call the initialization function. */
(*init_routine)();
/* Do a store_release indicating that initialization is complete */
ANDROID_MEMBAR_FULL();
*ocptr = ONCE_COMPLETED;
/* Wake up any waiters, if any */
__futex_wake_ex(ocptr, 0, INT_MAX);
return 0;
}
/* This value is not exported by kernel headers, so hardcode it here */
#define MAX_TASK_COMM_LEN 16
#define TASK_COMM_FMT "/proc/self/task/%u/comm"
int pthread_setname_np(pthread_t thid, const char *thname)
{
size_t thname_len;
int saved_errno, ret;
if (thid == 0 || thname == NULL)
return EINVAL;
thname_len = strlen(thname);
if (thname_len >= MAX_TASK_COMM_LEN)
return ERANGE;
saved_errno = errno;
if (thid == pthread_self())
{
ret = prctl(PR_SET_NAME, (unsigned long)thname, 0, 0, 0) ? errno : 0;
}
else
{
/* Have to change another thread's name */
pthread_internal_t *thread = (pthread_internal_t *)thid;
char comm_name[sizeof(TASK_COMM_FMT) + 8];
ssize_t n;
int fd;
snprintf(comm_name, sizeof(comm_name), TASK_COMM_FMT, (unsigned int)thread->kernel_id);
fd = open(comm_name, O_RDWR);
if (fd == -1)
{
ret = errno;
goto exit;
}
n = TEMP_FAILURE_RETRY(write(fd, thname, thname_len));
close(fd);
if (n < 0)
ret = errno;
else if ((size_t)n != thname_len)
ret = EIO;
else
ret = 0;
}
exit:
errno = saved_errno;
return ret;
}
/* Return the kernel thread ID for a pthread.
* This is only defined for implementations where pthread <-> kernel is 1:1, which this is.
* Not the same as pthread_getthreadid_np, which is commonly defined to be opaque.
* Internal, not an NDK API.
*/
pid_t __pthread_gettid(pthread_t thid)
{
pthread_internal_t* thread = (pthread_internal_t*)thid;
return thread->kernel_id;
}