60907c7f4e
The pthread_mutex_lock and pthread_mutex_unlock were allowed to
fail silently on L 32 bit devices when passed a NULL. We changed
this to a crash on 32 bit devices, but there are still games that make
these calls and are not likely to be updated. Therefore, once again
allow NULL to be passed in on 32 bit devices.
Bug: 19995172
(cherry picked from commit 511cfd9dc8
)
Change-Id: I159a99a941cff94297ef3fffda7075f8ef1ae252
1573 lines
48 KiB
C++
1573 lines
48 KiB
C++
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <malloc.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/syscall.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include <atomic>
|
|
#include <regex>
|
|
#include <vector>
|
|
|
|
#include <base/file.h>
|
|
#include <base/stringprintf.h>
|
|
|
|
#include "private/bionic_macros.h"
|
|
#include "private/ScopeGuard.h"
|
|
#include "BionicDeathTest.h"
|
|
#include "ScopedSignalHandler.h"
|
|
|
|
extern "C" pid_t gettid();
|
|
|
|
TEST(pthread, pthread_key_create) {
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
// Can't delete a key that's already been deleted.
|
|
ASSERT_EQ(EINVAL, pthread_key_delete(key));
|
|
}
|
|
|
|
TEST(pthread, pthread_keys_max) {
|
|
// POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
|
|
ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
|
|
}
|
|
|
|
TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
|
|
int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
|
|
ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
|
|
}
|
|
|
|
TEST(pthread, pthread_key_many_distinct) {
|
|
// As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
|
|
// pthread keys, but We should be able to allocate at least this many keys.
|
|
int nkeys = PTHREAD_KEYS_MAX / 2;
|
|
std::vector<pthread_key_t> keys;
|
|
|
|
auto scope_guard = make_scope_guard([&keys]{
|
|
for (auto key : keys) {
|
|
EXPECT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
});
|
|
|
|
for (int i = 0; i < nkeys; ++i) {
|
|
pthread_key_t key;
|
|
// If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
|
|
keys.push_back(key);
|
|
ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
|
|
}
|
|
|
|
for (int i = keys.size() - 1; i >= 0; --i) {
|
|
ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
|
|
pthread_key_t key = keys.back();
|
|
keys.pop_back();
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
|
|
std::vector<pthread_key_t> keys;
|
|
int rv = 0;
|
|
|
|
// Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
|
|
// be more than we are allowed to allocate now.
|
|
for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
|
|
pthread_key_t key;
|
|
rv = pthread_key_create(&key, NULL);
|
|
if (rv == EAGAIN) {
|
|
break;
|
|
}
|
|
EXPECT_EQ(0, rv);
|
|
keys.push_back(key);
|
|
}
|
|
|
|
// Don't leak keys.
|
|
for (auto key : keys) {
|
|
EXPECT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
keys.clear();
|
|
|
|
// We should have eventually reached the maximum number of keys and received
|
|
// EAGAIN.
|
|
ASSERT_EQ(EAGAIN, rv);
|
|
}
|
|
|
|
TEST(pthread, pthread_key_delete) {
|
|
void* expected = reinterpret_cast<void*>(1234);
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_setspecific(key, expected));
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
// After deletion, pthread_getspecific returns NULL.
|
|
ASSERT_EQ(NULL, pthread_getspecific(key));
|
|
// And you can't use pthread_setspecific with the deleted key.
|
|
ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
|
|
}
|
|
|
|
TEST(pthread, pthread_key_fork) {
|
|
void* expected = reinterpret_cast<void*>(1234);
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
ASSERT_EQ(0, pthread_setspecific(key, expected));
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
|
|
pid_t pid = fork();
|
|
ASSERT_NE(-1, pid) << strerror(errno);
|
|
|
|
if (pid == 0) {
|
|
// The surviving thread inherits all the forking thread's TLS values...
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
_exit(99);
|
|
}
|
|
|
|
int status;
|
|
ASSERT_EQ(pid, waitpid(pid, &status, 0));
|
|
ASSERT_TRUE(WIFEXITED(status));
|
|
ASSERT_EQ(99, WEXITSTATUS(status));
|
|
|
|
ASSERT_EQ(expected, pthread_getspecific(key));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
|
|
static void* DirtyKeyFn(void* key) {
|
|
return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
|
|
}
|
|
|
|
TEST(pthread, pthread_key_dirty) {
|
|
pthread_key_t key;
|
|
ASSERT_EQ(0, pthread_key_create(&key, NULL));
|
|
|
|
size_t stack_size = 128 * 1024;
|
|
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
ASSERT_NE(MAP_FAILED, stack);
|
|
memset(stack, 0xff, stack_size);
|
|
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_attr_init(&attr));
|
|
ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
|
|
|
|
void* result;
|
|
ASSERT_EQ(0, pthread_join(t, &result));
|
|
ASSERT_EQ(nullptr, result); // Not ~0!
|
|
|
|
ASSERT_EQ(0, munmap(stack, stack_size));
|
|
ASSERT_EQ(0, pthread_key_delete(key));
|
|
}
|
|
|
|
TEST(pthread, static_pthread_key_used_before_creation) {
|
|
#if defined(__BIONIC__)
|
|
// See http://b/19625804. The bug is about a static/global pthread key being used before creation.
|
|
// So here tests if the static/global default value 0 can be detected as invalid key.
|
|
static pthread_key_t key;
|
|
ASSERT_EQ(nullptr, pthread_getspecific(key));
|
|
ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
|
|
ASSERT_EQ(EINVAL, pthread_key_delete(key));
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
|
|
#endif
|
|
}
|
|
|
|
static void* IdFn(void* arg) {
|
|
return arg;
|
|
}
|
|
|
|
class SpinFunctionHelper {
|
|
public:
|
|
SpinFunctionHelper() {
|
|
SpinFunctionHelper::spin_flag_ = true;
|
|
}
|
|
~SpinFunctionHelper() {
|
|
UnSpin();
|
|
}
|
|
auto GetFunction() -> void* (*)(void*) {
|
|
return SpinFunctionHelper::SpinFn;
|
|
}
|
|
|
|
void UnSpin() {
|
|
SpinFunctionHelper::spin_flag_ = false;
|
|
}
|
|
|
|
private:
|
|
static void* SpinFn(void*) {
|
|
while (spin_flag_) {}
|
|
return NULL;
|
|
}
|
|
static volatile bool spin_flag_;
|
|
};
|
|
|
|
// It doesn't matter if spin_flag_ is used in several tests,
|
|
// because it is always set to false after each test. Each thread
|
|
// loops on spin_flag_ can find it becomes false at some time.
|
|
volatile bool SpinFunctionHelper::spin_flag_ = false;
|
|
|
|
static void* JoinFn(void* arg) {
|
|
return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
|
|
}
|
|
|
|
static void AssertDetached(pthread_t t, bool is_detached) {
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_getattr_np(t, &attr));
|
|
int detach_state;
|
|
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
|
|
pthread_attr_destroy(&attr);
|
|
ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
|
|
}
|
|
|
|
static void MakeDeadThread(pthread_t& t) {
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
|
|
ASSERT_EQ(0, pthread_join(t, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_create) {
|
|
void* expected_result = reinterpret_cast<void*>(123);
|
|
// Can we create a thread?
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
|
|
// If we join, do we get the expected value back?
|
|
void* result;
|
|
ASSERT_EQ(0, pthread_join(t, &result));
|
|
ASSERT_EQ(expected_result, result);
|
|
}
|
|
|
|
TEST(pthread, pthread_create_EAGAIN) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_no_join_after_detach) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
// After a pthread_detach...
|
|
ASSERT_EQ(0, pthread_detach(t1));
|
|
AssertDetached(t1, true);
|
|
|
|
// ...pthread_join should fail.
|
|
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_no_op_detach_after_join) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
// If thread 2 is already waiting to join thread 1...
|
|
pthread_t t2;
|
|
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
|
|
|
|
sleep(1); // (Give t2 a chance to call pthread_join.)
|
|
|
|
#if defined(__BIONIC__)
|
|
ASSERT_EQ(EINVAL, pthread_detach(t1));
|
|
#else
|
|
ASSERT_EQ(0, pthread_detach(t1));
|
|
#endif
|
|
AssertDetached(t1, false);
|
|
|
|
spinhelper.UnSpin();
|
|
|
|
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(t2, &join_result));
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
}
|
|
|
|
TEST(pthread, pthread_join_self) {
|
|
ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
|
|
}
|
|
|
|
struct TestBug37410 {
|
|
pthread_t main_thread;
|
|
pthread_mutex_t mutex;
|
|
|
|
static void main() {
|
|
TestBug37410 data;
|
|
data.main_thread = pthread_self();
|
|
ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
|
|
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
|
|
|
|
// Wait for the thread to be running...
|
|
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
|
|
|
|
// ...and exit.
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
private:
|
|
static void* thread_fn(void* arg) {
|
|
TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
|
|
|
|
// Let the main thread know we're running.
|
|
pthread_mutex_unlock(&data->mutex);
|
|
|
|
// And wait for the main thread to exit.
|
|
pthread_join(data->main_thread, NULL);
|
|
|
|
return NULL;
|
|
}
|
|
};
|
|
|
|
// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
|
|
// run this test (which exits normally) in its own process.
|
|
|
|
class pthread_DeathTest : public BionicDeathTest {};
|
|
|
|
TEST_F(pthread_DeathTest, pthread_bug_37410) {
|
|
// http://code.google.com/p/android/issues/detail?id=37410
|
|
ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
|
|
}
|
|
|
|
static void* SignalHandlerFn(void* arg) {
|
|
sigset_t wait_set;
|
|
sigfillset(&wait_set);
|
|
return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
|
|
}
|
|
|
|
TEST(pthread, pthread_sigmask) {
|
|
// Check that SIGUSR1 isn't blocked.
|
|
sigset_t original_set;
|
|
sigemptyset(&original_set);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
|
|
ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
|
|
|
|
// Block SIGUSR1.
|
|
sigset_t set;
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIGUSR1);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
|
|
|
|
// Check that SIGUSR1 is blocked.
|
|
sigset_t final_set;
|
|
sigemptyset(&final_set);
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
|
|
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
|
|
// ...and that sigprocmask agrees with pthread_sigmask.
|
|
sigemptyset(&final_set);
|
|
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
|
|
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
|
|
|
|
// Spawn a thread that calls sigwait and tells us what it received.
|
|
pthread_t signal_thread;
|
|
int received_signal = -1;
|
|
ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
|
|
|
|
// Send that thread SIGUSR1.
|
|
pthread_kill(signal_thread, SIGUSR1);
|
|
|
|
// See what it got.
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
|
|
ASSERT_EQ(SIGUSR1, received_signal);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
|
|
// Restore the original signal mask.
|
|
ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__too_long) {
|
|
// The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
|
|
ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
|
|
ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__self) {
|
|
ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__other) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
|
|
}
|
|
|
|
TEST(pthread, pthread_setname_np__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
// Call pthread_setname_np after thread has already exited.
|
|
ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__0) {
|
|
// Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__invalid_signal) {
|
|
ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
|
|
}
|
|
|
|
static void pthread_kill__in_signal_handler_helper(int signal_number) {
|
|
static int count = 0;
|
|
ASSERT_EQ(SIGALRM, signal_number);
|
|
if (++count == 1) {
|
|
// Can we call pthread_kill from a signal handler?
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
|
|
}
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__in_signal_handler) {
|
|
ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
|
|
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
|
|
}
|
|
|
|
TEST(pthread, pthread_detach__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
|
|
}
|
|
|
|
TEST(pthread, pthread_getcpuclockid__clock_gettime) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
clockid_t c;
|
|
ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(c, &ts));
|
|
}
|
|
|
|
TEST(pthread, pthread_getcpuclockid__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
clockid_t c;
|
|
ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
|
|
}
|
|
|
|
TEST(pthread, pthread_getschedparam__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
int policy;
|
|
sched_param param;
|
|
ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m));
|
|
}
|
|
|
|
TEST(pthread, pthread_setschedparam__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
int policy = 0;
|
|
sched_param param;
|
|
ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_kill__no_such_thread) {
|
|
pthread_t dead_thread;
|
|
MakeDeadThread(dead_thread);
|
|
|
|
ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__multijoin) {
|
|
SpinFunctionHelper spinhelper;
|
|
|
|
pthread_t t1;
|
|
ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
|
|
|
|
pthread_t t2;
|
|
ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
|
|
|
|
sleep(1); // (Give t2 a chance to call pthread_join.)
|
|
|
|
// Multiple joins to the same thread should fail.
|
|
ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
|
|
|
|
spinhelper.UnSpin();
|
|
|
|
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
|
|
void* join_result;
|
|
ASSERT_EQ(0, pthread_join(t2, &join_result));
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
|
|
}
|
|
|
|
TEST(pthread, pthread_join__race) {
|
|
// http://b/11693195 --- pthread_join could return before the thread had actually exited.
|
|
// If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
|
|
for (size_t i = 0; i < 1024; ++i) {
|
|
size_t stack_size = 64*1024;
|
|
void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
|
|
|
|
pthread_attr_t a;
|
|
pthread_attr_init(&a);
|
|
pthread_attr_setstack(&a, stack, stack_size);
|
|
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
|
|
ASSERT_EQ(0, pthread_join(t, NULL));
|
|
ASSERT_EQ(0, munmap(stack, stack_size));
|
|
}
|
|
}
|
|
|
|
static void* GetActualGuardSizeFn(void* arg) {
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
|
|
return NULL;
|
|
}
|
|
|
|
static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
|
|
size_t result;
|
|
pthread_t t;
|
|
pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
|
|
pthread_join(t, NULL);
|
|
return result;
|
|
}
|
|
|
|
static void* GetActualStackSizeFn(void* arg) {
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
|
|
return NULL;
|
|
}
|
|
|
|
static size_t GetActualStackSize(const pthread_attr_t& attributes) {
|
|
size_t result;
|
|
pthread_t t;
|
|
pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
|
|
pthread_join(t, NULL);
|
|
return result;
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_setguardsize) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
|
|
// Get the default guard size.
|
|
size_t default_guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
|
|
|
|
// No such thing as too small: will be rounded up to one page by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
|
|
size_t guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(128U, guard_size);
|
|
ASSERT_EQ(4096U, GetActualGuardSize(attributes));
|
|
|
|
// Large enough and a multiple of the page size.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(32*1024U, guard_size);
|
|
|
|
// Large enough but not a multiple of the page size; will be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(32*1024U + 1, guard_size);
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_setstacksize) {
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_attr_init(&attributes));
|
|
|
|
// Get the default stack size.
|
|
size_t default_stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
|
|
|
|
// Too small.
|
|
ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
|
|
size_t stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(default_stack_size, stack_size);
|
|
ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
|
|
|
|
// Large enough and a multiple of the page size; may be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(32*1024U, stack_size);
|
|
ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
|
|
|
|
// Large enough but not aligned; will be rounded up by pthread_create.
|
|
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
|
|
ASSERT_EQ(32*1024U + 1, stack_size);
|
|
#if defined(__BIONIC__)
|
|
ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
|
|
#else // __BIONIC__
|
|
// glibc rounds down, in violation of POSIX. They document this in their BUGS section.
|
|
ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
|
|
#endif // __BIONIC__
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlockattr_smoke) {
|
|
pthread_rwlockattr_t attr;
|
|
ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
|
|
|
|
int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
|
|
for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
|
|
ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(pshared_value_array[i], pshared);
|
|
}
|
|
|
|
int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
|
|
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
|
|
for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
|
|
ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
|
|
int kind;
|
|
ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
|
|
ASSERT_EQ(kind_array[i], kind);
|
|
}
|
|
|
|
ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
|
|
pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
|
|
pthread_rwlock_t lock2;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
|
|
ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_smoke) {
|
|
pthread_rwlock_t l;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
|
|
|
|
// Single read lock
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Multiple read lock
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Write lock
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try writer lock
|
|
ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try reader lock
|
|
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// Try writer lock after unlock
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// EDEADLK in "read after write"
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
// EDEADLK in "write after write"
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
|
|
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&l));
|
|
}
|
|
|
|
static void WaitUntilThreadSleep(std::atomic<pid_t>& pid) {
|
|
while (pid == 0) {
|
|
usleep(1000);
|
|
}
|
|
std::string filename = android::base::StringPrintf("/proc/%d/stat", pid.load());
|
|
std::regex regex {R"(\s+S\s+)"};
|
|
|
|
while (true) {
|
|
std::string content;
|
|
ASSERT_TRUE(android::base::ReadFileToString(filename, &content));
|
|
if (std::regex_search(content, regex)) {
|
|
break;
|
|
}
|
|
usleep(1000);
|
|
}
|
|
}
|
|
|
|
struct RwlockWakeupHelperArg {
|
|
pthread_rwlock_t lock;
|
|
enum Progress {
|
|
LOCK_INITIALIZED,
|
|
LOCK_WAITING,
|
|
LOCK_RELEASED,
|
|
LOCK_ACCESSED
|
|
};
|
|
std::atomic<Progress> progress;
|
|
std::atomic<pid_t> tid;
|
|
};
|
|
|
|
static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
|
|
arg->tid = gettid();
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
|
|
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
|
|
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
|
|
RwlockWakeupHelperArg wakeup_arg;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
|
|
wakeup_arg.tid = 0;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
|
|
WaitUntilThreadSleep(wakeup_arg.tid);
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
|
|
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, NULL));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
|
|
}
|
|
|
|
static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
|
|
arg->tid = gettid();
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
|
|
|
|
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
|
|
|
|
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
|
|
RwlockWakeupHelperArg wakeup_arg;
|
|
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
|
|
wakeup_arg.tid = 0;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
|
|
WaitUntilThreadSleep(wakeup_arg.tid);
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
|
|
|
|
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, NULL));
|
|
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
|
|
}
|
|
|
|
class RwlockKindTestHelper {
|
|
private:
|
|
struct ThreadArg {
|
|
RwlockKindTestHelper* helper;
|
|
std::atomic<pid_t>& tid;
|
|
|
|
ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
|
|
: helper(helper), tid(tid) { }
|
|
};
|
|
|
|
public:
|
|
pthread_rwlock_t lock;
|
|
|
|
public:
|
|
RwlockKindTestHelper(int kind_type) {
|
|
InitRwlock(kind_type);
|
|
}
|
|
|
|
~RwlockKindTestHelper() {
|
|
DestroyRwlock();
|
|
}
|
|
|
|
void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
|
|
tid = 0;
|
|
ThreadArg* arg = new ThreadArg(this, tid);
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
|
|
}
|
|
|
|
void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
|
|
tid = 0;
|
|
ThreadArg* arg = new ThreadArg(this, tid);
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
|
|
}
|
|
|
|
private:
|
|
void InitRwlock(int kind_type) {
|
|
pthread_rwlockattr_t attr;
|
|
ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
|
|
ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
|
|
ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
|
|
}
|
|
|
|
void DestroyRwlock() {
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
|
|
}
|
|
|
|
static void WriterThreadFn(ThreadArg* arg) {
|
|
arg->tid = gettid();
|
|
|
|
RwlockKindTestHelper* helper = arg->helper;
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
|
|
delete arg;
|
|
}
|
|
|
|
static void ReaderThreadFn(ThreadArg* arg) {
|
|
arg->tid = gettid();
|
|
|
|
RwlockKindTestHelper* helper = arg->helper;
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
|
|
delete arg;
|
|
}
|
|
};
|
|
|
|
TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
|
|
RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
|
|
|
|
pthread_t writer_thread;
|
|
std::atomic<pid_t> writer_tid;
|
|
helper.CreateWriterThread(writer_thread, writer_tid);
|
|
WaitUntilThreadSleep(writer_tid);
|
|
|
|
pthread_t reader_thread;
|
|
std::atomic<pid_t> reader_tid;
|
|
helper.CreateReaderThread(reader_thread, reader_tid);
|
|
ASSERT_EQ(0, pthread_join(reader_thread, NULL));
|
|
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
|
|
ASSERT_EQ(0, pthread_join(writer_thread, NULL));
|
|
}
|
|
|
|
TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
|
|
RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
|
|
|
|
pthread_t writer_thread;
|
|
std::atomic<pid_t> writer_tid;
|
|
helper.CreateWriterThread(writer_thread, writer_tid);
|
|
WaitUntilThreadSleep(writer_tid);
|
|
|
|
pthread_t reader_thread;
|
|
std::atomic<pid_t> reader_tid;
|
|
helper.CreateReaderThread(reader_thread, reader_tid);
|
|
WaitUntilThreadSleep(reader_tid);
|
|
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
|
|
ASSERT_EQ(0, pthread_join(writer_thread, NULL));
|
|
ASSERT_EQ(0, pthread_join(reader_thread, NULL));
|
|
}
|
|
|
|
static int g_once_fn_call_count = 0;
|
|
static void OnceFn() {
|
|
++g_once_fn_call_count;
|
|
}
|
|
|
|
TEST(pthread, pthread_once_smoke) {
|
|
pthread_once_t once_control = PTHREAD_ONCE_INIT;
|
|
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
|
|
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
|
|
ASSERT_EQ(1, g_once_fn_call_count);
|
|
}
|
|
|
|
static std::string pthread_once_1934122_result = "";
|
|
|
|
static void Routine2() {
|
|
pthread_once_1934122_result += "2";
|
|
}
|
|
|
|
static void Routine1() {
|
|
pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
|
|
pthread_once_1934122_result += "1";
|
|
pthread_once(&once_control_2, &Routine2);
|
|
}
|
|
|
|
TEST(pthread, pthread_once_1934122) {
|
|
// Very old versions of Android couldn't call pthread_once from a
|
|
// pthread_once init routine. http://b/1934122.
|
|
pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
|
|
ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
|
|
ASSERT_EQ("12", pthread_once_1934122_result);
|
|
}
|
|
|
|
static int g_atfork_prepare_calls = 0;
|
|
static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
|
|
static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
|
|
static int g_atfork_parent_calls = 0;
|
|
static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
|
|
static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
|
|
static int g_atfork_child_calls = 0;
|
|
static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
|
|
static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
|
|
|
|
TEST(pthread, pthread_atfork_smoke) {
|
|
ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
|
|
ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
|
|
|
|
int pid = fork();
|
|
ASSERT_NE(-1, pid) << strerror(errno);
|
|
|
|
// Child and parent calls are made in the order they were registered.
|
|
if (pid == 0) {
|
|
ASSERT_EQ(12, g_atfork_child_calls);
|
|
_exit(0);
|
|
}
|
|
ASSERT_EQ(12, g_atfork_parent_calls);
|
|
|
|
// Prepare calls are made in the reverse order.
|
|
ASSERT_EQ(21, g_atfork_prepare_calls);
|
|
int status;
|
|
ASSERT_EQ(pid, waitpid(pid, &status, 0));
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_getscope) {
|
|
pthread_attr_t attr;
|
|
ASSERT_EQ(0, pthread_attr_init(&attr));
|
|
|
|
int scope;
|
|
ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
|
|
ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
|
|
}
|
|
|
|
TEST(pthread, pthread_condattr_init) {
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_REALTIME, clock);
|
|
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
|
|
}
|
|
|
|
TEST(pthread, pthread_condattr_setclock) {
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_REALTIME, clock);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_MONOTONIC, clock);
|
|
|
|
ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
|
|
}
|
|
|
|
TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
|
|
#if defined(__BIONIC__)
|
|
pthread_condattr_t attr;
|
|
pthread_condattr_init(&attr);
|
|
|
|
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
|
|
ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
|
|
|
|
pthread_cond_t cond_var;
|
|
ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
|
|
|
|
ASSERT_EQ(0, pthread_cond_signal(&cond_var));
|
|
ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
|
|
|
|
attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
|
|
clockid_t clock;
|
|
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
|
|
ASSERT_EQ(CLOCK_MONOTONIC, clock);
|
|
int pshared;
|
|
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
|
|
ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
|
|
#else // !defined(__BIONIC__)
|
|
GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
|
|
#endif // !defined(__BIONIC__)
|
|
}
|
|
|
|
class pthread_CondWakeupTest : public ::testing::Test {
|
|
protected:
|
|
pthread_mutex_t mutex;
|
|
pthread_cond_t cond;
|
|
|
|
enum Progress {
|
|
INITIALIZED,
|
|
WAITING,
|
|
SIGNALED,
|
|
FINISHED,
|
|
};
|
|
std::atomic<Progress> progress;
|
|
pthread_t thread;
|
|
|
|
protected:
|
|
virtual void SetUp() {
|
|
ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL));
|
|
ASSERT_EQ(0, pthread_cond_init(&cond, NULL));
|
|
progress = INITIALIZED;
|
|
ASSERT_EQ(0,
|
|
pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
|
|
}
|
|
|
|
virtual void TearDown() {
|
|
ASSERT_EQ(0, pthread_join(thread, NULL));
|
|
ASSERT_EQ(FINISHED, progress);
|
|
ASSERT_EQ(0, pthread_cond_destroy(&cond));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
|
|
}
|
|
|
|
void SleepUntilProgress(Progress expected_progress) {
|
|
while (progress != expected_progress) {
|
|
usleep(5000);
|
|
}
|
|
usleep(5000);
|
|
}
|
|
|
|
private:
|
|
static void WaitThreadFn(pthread_CondWakeupTest* test) {
|
|
ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
|
|
test->progress = WAITING;
|
|
while (test->progress == WAITING) {
|
|
ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex));
|
|
}
|
|
ASSERT_EQ(SIGNALED, test->progress);
|
|
test->progress = FINISHED;
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
|
|
}
|
|
};
|
|
|
|
TEST_F(pthread_CondWakeupTest, signal) {
|
|
SleepUntilProgress(WAITING);
|
|
progress = SIGNALED;
|
|
pthread_cond_signal(&cond);
|
|
}
|
|
|
|
TEST_F(pthread_CondWakeupTest, broadcast) {
|
|
SleepUntilProgress(WAITING);
|
|
progress = SIGNALED;
|
|
pthread_cond_broadcast(&cond);
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_timedlock) {
|
|
pthread_mutex_t m;
|
|
ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
|
|
|
|
// If the mutex is already locked, pthread_mutex_timedlock should time out.
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m));
|
|
|
|
timespec ts;
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_nsec += 1;
|
|
ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
|
|
|
|
// If the mutex is unlocked, pthread_mutex_timedlock should succeed.
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m));
|
|
|
|
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
|
|
ts.tv_nsec += 1;
|
|
ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
|
|
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&m));
|
|
}
|
|
|
|
TEST(pthread, pthread_attr_getstack__main_thread) {
|
|
// This test is only meaningful for the main thread, so make sure we're running on it!
|
|
ASSERT_EQ(getpid(), syscall(__NR_gettid));
|
|
|
|
// Get the main thread's attributes.
|
|
pthread_attr_t attributes;
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
|
|
// Check that we correctly report that the main thread has no guard page.
|
|
size_t guard_size;
|
|
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
|
|
ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
|
|
|
|
// Get the stack base and the stack size (both ways).
|
|
void* stack_base;
|
|
size_t stack_size;
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
size_t stack_size2;
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
// The two methods of asking for the stack size should agree.
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
|
|
#if defined(__BIONIC__)
|
|
// What does /proc/self/maps' [stack] line say?
|
|
void* maps_stack_hi = NULL;
|
|
FILE* fp = fopen("/proc/self/maps", "r");
|
|
ASSERT_TRUE(fp != NULL);
|
|
char line[BUFSIZ];
|
|
while (fgets(line, sizeof(line), fp) != NULL) {
|
|
uintptr_t lo, hi;
|
|
char name[10];
|
|
sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
|
|
if (strcmp(name, "[stack]") == 0) {
|
|
maps_stack_hi = reinterpret_cast<void*>(hi);
|
|
break;
|
|
}
|
|
}
|
|
fclose(fp);
|
|
|
|
// The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
|
|
// Remember that the stack grows down (and is mapped in on demand), so the low address of the
|
|
// region isn't very interesting.
|
|
EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
|
|
|
|
// The stack size should correspond to RLIMIT_STACK.
|
|
rlimit rl;
|
|
ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
|
|
uint64_t original_rlim_cur = rl.rlim_cur;
|
|
if (rl.rlim_cur == RLIM_INFINITY) {
|
|
rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
|
|
}
|
|
EXPECT_EQ(rl.rlim_cur, stack_size);
|
|
|
|
auto guard = make_scope_guard([&rl, original_rlim_cur]() {
|
|
rl.rlim_cur = original_rlim_cur;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
});
|
|
|
|
//
|
|
// What if RLIMIT_STACK is smaller than the stack's current extent?
|
|
//
|
|
rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
|
|
rl.rlim_max = RLIM_INFINITY;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
ASSERT_EQ(1024U, stack_size);
|
|
|
|
//
|
|
// What if RLIMIT_STACK isn't a whole number of pages?
|
|
//
|
|
rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
|
|
rl.rlim_max = RLIM_INFINITY;
|
|
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
|
|
|
|
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
|
|
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
|
|
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
|
|
|
|
EXPECT_EQ(stack_size, stack_size2);
|
|
ASSERT_EQ(6666U, stack_size);
|
|
#endif
|
|
}
|
|
|
|
static void pthread_attr_getstack_18908062_helper(void*) {
|
|
char local_variable;
|
|
pthread_attr_t attributes;
|
|
pthread_getattr_np(pthread_self(), &attributes);
|
|
void* stack_base;
|
|
size_t stack_size;
|
|
pthread_attr_getstack(&attributes, &stack_base, &stack_size);
|
|
|
|
// Test whether &local_variable is in [stack_base, stack_base + stack_size).
|
|
ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
|
|
ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
|
|
}
|
|
|
|
// Check whether something on stack is in the range of
|
|
// [stack_base, stack_base + stack_size). see b/18908062.
|
|
TEST(pthread, pthread_attr_getstack_18908062) {
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
|
|
NULL));
|
|
pthread_join(t, NULL);
|
|
}
|
|
|
|
#if defined(__BIONIC__)
|
|
static void* pthread_gettid_np_helper(void* arg) {
|
|
*reinterpret_cast<pid_t*>(arg) = gettid();
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
TEST(pthread, pthread_gettid_np) {
|
|
#if defined(__BIONIC__)
|
|
ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
|
|
|
|
pid_t t_gettid_result;
|
|
pthread_t t;
|
|
pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
|
|
|
|
pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
|
|
|
|
pthread_join(t, NULL);
|
|
|
|
ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test does nothing.\n";
|
|
#endif
|
|
}
|
|
|
|
static size_t cleanup_counter = 0;
|
|
|
|
static void AbortCleanupRoutine(void*) {
|
|
abort();
|
|
}
|
|
|
|
static void CountCleanupRoutine(void*) {
|
|
++cleanup_counter;
|
|
}
|
|
|
|
static void PthreadCleanupTester() {
|
|
pthread_cleanup_push(CountCleanupRoutine, NULL);
|
|
pthread_cleanup_push(CountCleanupRoutine, NULL);
|
|
pthread_cleanup_push(AbortCleanupRoutine, NULL);
|
|
|
|
pthread_cleanup_pop(0); // Pop the abort without executing it.
|
|
pthread_cleanup_pop(1); // Pop one count while executing it.
|
|
ASSERT_EQ(1U, cleanup_counter);
|
|
// Exit while the other count is still on the cleanup stack.
|
|
pthread_exit(NULL);
|
|
|
|
// Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
|
|
pthread_cleanup_pop(0);
|
|
}
|
|
|
|
static void* PthreadCleanupStartRoutine(void*) {
|
|
PthreadCleanupTester();
|
|
return NULL;
|
|
}
|
|
|
|
TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
|
|
pthread_t t;
|
|
ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
|
|
pthread_join(t, NULL);
|
|
ASSERT_EQ(2U, cleanup_counter);
|
|
}
|
|
|
|
TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
|
|
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
|
|
}
|
|
|
|
TEST(pthread, pthread_mutexattr_gettype) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
|
|
int attr_type;
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
|
|
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
|
|
ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
|
|
|
|
ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
|
|
}
|
|
|
|
struct PthreadMutex {
|
|
pthread_mutex_t lock;
|
|
|
|
PthreadMutex(int mutex_type) {
|
|
init(mutex_type);
|
|
}
|
|
|
|
~PthreadMutex() {
|
|
destroy();
|
|
}
|
|
|
|
private:
|
|
void init(int mutex_type) {
|
|
pthread_mutexattr_t attr;
|
|
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
|
|
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
|
|
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
|
|
ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
|
|
}
|
|
|
|
void destroy() {
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
|
|
};
|
|
|
|
TEST(pthread, pthread_mutex_lock_NORMAL) {
|
|
PthreadMutex m(PTHREAD_MUTEX_NORMAL);
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
|
|
PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
|
|
ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_RECURSIVE) {
|
|
PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
|
|
pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
|
|
PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
|
|
ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
|
|
pthread_mutex_destroy(&lock_normal);
|
|
|
|
pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
|
|
PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
|
|
ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
|
|
pthread_mutex_destroy(&lock_errorcheck);
|
|
|
|
pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
|
|
PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
|
|
ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
|
|
}
|
|
class MutexWakeupHelper {
|
|
private:
|
|
PthreadMutex m;
|
|
enum Progress {
|
|
LOCK_INITIALIZED,
|
|
LOCK_WAITING,
|
|
LOCK_RELEASED,
|
|
LOCK_ACCESSED
|
|
};
|
|
std::atomic<Progress> progress;
|
|
std::atomic<pid_t> tid;
|
|
|
|
static void thread_fn(MutexWakeupHelper* helper) {
|
|
helper->tid = gettid();
|
|
ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
|
|
helper->progress = LOCK_WAITING;
|
|
|
|
ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
|
|
ASSERT_EQ(LOCK_RELEASED, helper->progress);
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
|
|
|
|
helper->progress = LOCK_ACCESSED;
|
|
}
|
|
|
|
public:
|
|
MutexWakeupHelper(int mutex_type) : m(mutex_type) {
|
|
}
|
|
|
|
void test() {
|
|
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
|
|
progress = LOCK_INITIALIZED;
|
|
tid = 0;
|
|
|
|
pthread_t thread;
|
|
ASSERT_EQ(0, pthread_create(&thread, NULL,
|
|
reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
|
|
|
|
WaitUntilThreadSleep(tid);
|
|
ASSERT_EQ(LOCK_WAITING, progress);
|
|
|
|
progress = LOCK_RELEASED;
|
|
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
|
|
|
|
ASSERT_EQ(0, pthread_join(thread, NULL));
|
|
ASSERT_EQ(LOCK_ACCESSED, progress);
|
|
}
|
|
};
|
|
|
|
TEST(pthread, pthread_mutex_NORMAL_wakeup) {
|
|
MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
|
|
helper.test();
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
|
|
MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
|
|
helper.test();
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
|
|
MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
|
|
helper.test();
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_owner_tid_limit) {
|
|
#if defined(__BIONIC__) && !defined(__LP64__)
|
|
FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
|
|
ASSERT_TRUE(fp != NULL);
|
|
long pid_max;
|
|
ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
|
|
fclose(fp);
|
|
// Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
|
|
ASSERT_LE(pid_max, 65536);
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
|
|
#endif
|
|
}
|
|
|
|
class StrictAlignmentAllocator {
|
|
public:
|
|
void* allocate(size_t size, size_t alignment) {
|
|
char* p = new char[size + alignment * 2];
|
|
allocated_array.push_back(p);
|
|
while (!is_strict_aligned(p, alignment)) {
|
|
++p;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
~StrictAlignmentAllocator() {
|
|
for (auto& p : allocated_array) {
|
|
delete [] p;
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool is_strict_aligned(char* p, size_t alignment) {
|
|
return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
|
|
}
|
|
|
|
std::vector<char*> allocated_array;
|
|
};
|
|
|
|
TEST(pthread, pthread_types_allow_four_bytes_alignment) {
|
|
#if defined(__BIONIC__)
|
|
// For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
|
|
StrictAlignmentAllocator allocator;
|
|
pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
|
|
allocator.allocate(sizeof(pthread_mutex_t), 4));
|
|
ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
|
|
ASSERT_EQ(0, pthread_mutex_lock(mutex));
|
|
ASSERT_EQ(0, pthread_mutex_unlock(mutex));
|
|
ASSERT_EQ(0, pthread_mutex_destroy(mutex));
|
|
|
|
pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
|
|
allocator.allocate(sizeof(pthread_cond_t), 4));
|
|
ASSERT_EQ(0, pthread_cond_init(cond, NULL));
|
|
ASSERT_EQ(0, pthread_cond_signal(cond));
|
|
ASSERT_EQ(0, pthread_cond_broadcast(cond));
|
|
ASSERT_EQ(0, pthread_cond_destroy(cond));
|
|
|
|
pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
|
|
allocator.allocate(sizeof(pthread_rwlock_t), 4));
|
|
ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
|
|
ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
|
|
ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
|
|
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
|
|
#endif
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_lock_null_32) {
|
|
#if defined(__BIONIC__) && !defined(__LP64__)
|
|
ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
|
|
#endif
|
|
}
|
|
|
|
TEST(pthread, pthread_mutex_unlock_null_32) {
|
|
#if defined(__BIONIC__) && !defined(__LP64__)
|
|
ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
|
|
#endif
|
|
}
|
|
|
|
TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
|
|
#if defined(__BIONIC__) && defined(__LP64__)
|
|
pthread_mutex_t* null_value = nullptr;
|
|
ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
|
|
#endif
|
|
}
|
|
|
|
TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
|
|
#if defined(__BIONIC__) && defined(__LP64__)
|
|
pthread_mutex_t* null_value = nullptr;
|
|
ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
|
|
#else
|
|
GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
|
|
#endif
|
|
}
|