7f0849fd11
The parsefloat routines -- which let us pass NaNs and infinities on to strto(f|d|ld) -- come from NetBSD. Also fix LP64's strtold to return a NaN, and fix all the architectures to return quiet NaNs. Also fix wcstof/wcstod/wcstold to use parsefloat so they support hex floats. Lots of new tests. Bug: http://b/31101647 Change-Id: Id7d46ac2d8acb8770b5e8c445e87cfabfde6f111
300 lines
9.5 KiB
C++
300 lines
9.5 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <math.h>
|
|
#include <fenv.h>
|
|
|
|
template <typename RT, typename T1>
|
|
struct data_1_1_t {
|
|
RT expected;
|
|
T1 input;
|
|
};
|
|
|
|
template <typename T1>
|
|
struct data_int_1_t {
|
|
int expected;
|
|
T1 input;
|
|
};
|
|
|
|
template <typename T1>
|
|
struct data_long_1_t {
|
|
long expected;
|
|
T1 input;
|
|
};
|
|
|
|
template <typename T1>
|
|
struct data_llong_1_t {
|
|
long long expected;
|
|
T1 input;
|
|
};
|
|
|
|
template <typename RT, typename T1, typename T2>
|
|
struct data_1_2_t {
|
|
RT expected;
|
|
T1 input1;
|
|
T2 input2;
|
|
};
|
|
|
|
template <typename RT1, typename RT2, typename T>
|
|
struct data_2_1_t {
|
|
RT1 expected1;
|
|
RT2 expected2;
|
|
T input;
|
|
};
|
|
|
|
template <typename RT1, typename T>
|
|
struct data_1_int_1_t {
|
|
RT1 expected1;
|
|
int expected2;
|
|
T input;
|
|
};
|
|
|
|
template <typename RT1, typename T1, typename T2>
|
|
struct data_1_int_2_t {
|
|
RT1 expected1;
|
|
int expected2;
|
|
T1 input1;
|
|
T2 input2;
|
|
};
|
|
|
|
template <typename RT, typename T1, typename T2, typename T3>
|
|
struct data_1_3_t {
|
|
RT expected;
|
|
T1 input1;
|
|
T2 input2;
|
|
T3 input3;
|
|
};
|
|
|
|
template <typename T> union fp_u;
|
|
|
|
template <> union fp_u<float> {
|
|
float value;
|
|
struct {
|
|
unsigned frac:23;
|
|
unsigned exp:8;
|
|
unsigned sign:1;
|
|
} bits;
|
|
uint32_t sign_magnitude;
|
|
};
|
|
|
|
template <> union fp_u<double> {
|
|
double value;
|
|
struct {
|
|
unsigned fracl;
|
|
unsigned frach:20;
|
|
unsigned exp:11;
|
|
unsigned sign:1;
|
|
} bits;
|
|
uint64_t sign_magnitude;
|
|
};
|
|
|
|
template <> union fp_u<long double> {
|
|
long double value;
|
|
#if defined(__LP64__)
|
|
struct {
|
|
unsigned fracl;
|
|
unsigned fraclm;
|
|
unsigned frachm;
|
|
unsigned frach:16;
|
|
unsigned exp:15;
|
|
unsigned sign:1;
|
|
} bits;
|
|
__int128_t sign_magnitude;
|
|
#else
|
|
struct {
|
|
unsigned fracl;
|
|
unsigned frach:20;
|
|
unsigned exp:11;
|
|
unsigned sign:1;
|
|
} bits;
|
|
uint64_t sign_magnitude;
|
|
#endif
|
|
};
|
|
|
|
template <typename T>
|
|
static inline auto SignAndMagnitudeToBiased(const T& value) -> decltype(fp_u<T>::sign_magnitude) {
|
|
fp_u<T> u;
|
|
u.value = value;
|
|
if (u.bits.sign) {
|
|
return ~u.sign_magnitude + 1;
|
|
} else {
|
|
u.bits.sign = 1;
|
|
return u.sign_magnitude;
|
|
}
|
|
}
|
|
|
|
// Based on the existing googletest implementation, which uses a fixed 4 ulp bound.
|
|
template <typename T>
|
|
size_t UlpDistance(T lhs, T rhs) {
|
|
const auto biased1 = SignAndMagnitudeToBiased(lhs);
|
|
const auto biased2 = SignAndMagnitudeToBiased(rhs);
|
|
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
|
|
}
|
|
|
|
template <size_t ULP, typename T>
|
|
struct FpUlpEq {
|
|
::testing::AssertionResult operator()(const char* /* expected_expression */,
|
|
const char* /* actual_expression */,
|
|
T expected,
|
|
T actual) {
|
|
if (!isnan(expected) && !isnan(actual) && UlpDistance(expected, actual) <= ULP) {
|
|
return ::testing::AssertionSuccess();
|
|
}
|
|
|
|
return ::testing::AssertionFailure()
|
|
<< "expected (" << std::hexfloat << expected << ") != actual (" << actual << ")";
|
|
}
|
|
};
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the result is within ULP ulps of the expected value.
|
|
// For testing a (double) -> double function like sin(3).
|
|
template <size_t ULP, typename RT, typename T, size_t N>
|
|
void DoMathDataTest(data_1_1_t<RT, T> (&data)[N], RT f(T)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
FpUlpEq<ULP, RT> predicate;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
EXPECT_PRED_FORMAT2(predicate,
|
|
data[i].expected, f(data[i].input)) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the result is within ULP ulps of the expected value.
|
|
// For testing a (double) -> int function like ilogb(3).
|
|
template <size_t ULP, typename T, size_t N>
|
|
void DoMathDataTest(data_int_1_t<T> (&data)[N], int f(T)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
for (size_t i = 0; i < N; ++i) {
|
|
EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the result is within ULP ulps of the expected value.
|
|
// For testing a (double) -> long int function like lrint(3).
|
|
template <size_t ULP, typename T, size_t N>
|
|
void DoMathDataTest(data_long_1_t<T> (&data)[N], long f(T)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
for (size_t i = 0; i < N; ++i) {
|
|
EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the result is within ULP ulps of the expected value.
|
|
// For testing a (double) -> long long int function like llrint(3).
|
|
template <size_t ULP, typename T, size_t N>
|
|
void DoMathDataTest(data_llong_1_t<T> (&data)[N], long long f(T)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
for (size_t i = 0; i < N; ++i) {
|
|
EXPECT_EQ(data[i].expected, f(data[i].input)) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the pairs of input values
|
|
// and asserting that the result is within ULP ulps of the expected value.
|
|
// For testing a (double, double) -> double function like pow(3).
|
|
template <size_t ULP, typename RT, typename T1, typename T2, size_t N>
|
|
void DoMathDataTest(data_1_2_t<RT, T1, T2> (&data)[N], RT f(T1, T2)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
FpUlpEq<ULP, RT> predicate;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
EXPECT_PRED_FORMAT2(predicate,
|
|
data[i].expected, f(data[i].input1, data[i].input2)) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the results are within ULP ulps of the expected values.
|
|
// For testing a (double, double*, double*) -> void function like sincos(3).
|
|
template <size_t ULP, typename RT1, typename RT2, typename T1, size_t N>
|
|
void DoMathDataTest(data_2_1_t<RT1, RT2, T1> (&data)[N], void f(T1, RT1*, RT2*)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
FpUlpEq<ULP, RT1> predicate1;
|
|
FpUlpEq<ULP, RT2> predicate2;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
RT1 out1;
|
|
RT2 out2;
|
|
f(data[i].input, &out1, &out2);
|
|
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
|
|
EXPECT_PRED_FORMAT2(predicate2, data[i].expected2, out2) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the results are within ULP ulps of the expected values.
|
|
// For testing a (double, double*) -> double function like modf(3).
|
|
template <size_t ULP, typename RT1, typename RT2, typename T1, size_t N>
|
|
void DoMathDataTest(data_2_1_t<RT1, RT2, T1> (&data)[N], RT1 f(T1, RT2*)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
FpUlpEq<ULP, RT1> predicate1;
|
|
FpUlpEq<ULP, RT2> predicate2;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
RT1 out1;
|
|
RT2 out2;
|
|
out1 = f(data[i].input, &out2);
|
|
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
|
|
EXPECT_PRED_FORMAT2(predicate2, data[i].expected2, out2) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the results are within ULP ulps of the expected values.
|
|
// For testing a (double, int*) -> double function like frexp(3).
|
|
template <size_t ULP, typename RT1, typename T1, size_t N>
|
|
void DoMathDataTest(data_1_int_1_t<RT1, T1> (&data)[N], RT1 f(T1, int*)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
FpUlpEq<ULP, RT1> predicate1;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
RT1 out1;
|
|
int out2;
|
|
out1 = f(data[i].input, &out2);
|
|
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
|
|
EXPECT_EQ(data[i].expected2, out2) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the input values
|
|
// and asserting that the results are within ULP ulps of the expected values.
|
|
// For testing a (double, double, int*) -> double function like remquo(3).
|
|
template <size_t ULP, typename RT1, typename T1, typename T2, size_t N>
|
|
void DoMathDataTest(data_1_int_2_t<RT1, T1, T2> (&data)[N], RT1 f(T1, T2, int*)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
FpUlpEq<ULP, RT1> predicate1;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
RT1 out1;
|
|
int out2;
|
|
out1 = f(data[i].input1, data[i].input2, &out2);
|
|
EXPECT_PRED_FORMAT2(predicate1, data[i].expected1, out1) << "Failed on element " << i;
|
|
EXPECT_EQ(data[i].expected2, out2) << "Failed on element " << i;
|
|
}
|
|
}
|
|
|
|
// Runs through the array 'data' applying 'f' to each of the pairs of input values
|
|
// and asserting that the result is within ULP ulps of the expected value.
|
|
// For testing a (double, double, double) -> double function like fma(3).
|
|
template <size_t ULP, typename RT, typename T1, typename T2, typename T3, size_t N>
|
|
void DoMathDataTest(data_1_3_t<RT, T1, T2, T3> (&data)[N], RT f(T1, T2, T3)) {
|
|
fesetenv(FE_DFL_ENV);
|
|
FpUlpEq<ULP, RT> predicate;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
EXPECT_PRED_FORMAT2(predicate,
|
|
data[i].expected, f(data[i].input1, data[i].input2, data[i].input3)) << "Failed on element " << i;
|
|
}
|
|
}
|