39b952cf0a
In order to enforce this constraint:
The pointer returned if the allocation succeeds shall be suitably
aligned so that it may be assigned to a pointer to any type of object
and then used to access such an object in the space allocated.
Force all allocations on 32 bit systems to have 8 byte alignment,
and all allocations on 64 bit systems to have 16 byte alignment.
Add a test to verify that the allocator returns the correct alignments.
Bug: 26739265
(cherry picked from commit 72df6708c8
)
Change-Id: I44ca8bedb1dac375087da1af3a1d7d12034e037f
502 lines
14 KiB
C++
502 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <limits.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <malloc.h>
|
|
#include <unistd.h>
|
|
|
|
#include <tinyxml2.h>
|
|
|
|
#include "private/bionic_config.h"
|
|
|
|
TEST(malloc, malloc_std) {
|
|
// Simple malloc test.
|
|
void *ptr = malloc(100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, malloc_overflow) {
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, malloc(SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
}
|
|
|
|
TEST(malloc, calloc_std) {
|
|
// Simple calloc test.
|
|
size_t alloc_len = 100;
|
|
char *ptr = (char *)calloc(1, alloc_len);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(alloc_len, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < alloc_len; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_illegal) {
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, calloc(-1, 100));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
}
|
|
|
|
TEST(malloc, calloc_overflow) {
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, calloc(1, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, calloc(SIZE_MAX, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, calloc(2, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, calloc(SIZE_MAX, 2));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
}
|
|
|
|
TEST(malloc, memalign_multiple) {
|
|
// Memalign test where the alignment is any value.
|
|
for (size_t i = 0; i <= 12; i++) {
|
|
for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) {
|
|
char *ptr = reinterpret_cast<char*>(memalign(alignment, 100));
|
|
ASSERT_TRUE(ptr != NULL) << "Failed at alignment " << alignment;
|
|
ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment;
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i)))
|
|
<< "Failed at alignment " << alignment;
|
|
free(ptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(malloc, memalign_overflow) {
|
|
ASSERT_EQ(NULL, memalign(4096, SIZE_MAX));
|
|
}
|
|
|
|
TEST(malloc, memalign_non_power2) {
|
|
void* ptr;
|
|
for (size_t align = 0; align <= 256; align++) {
|
|
ptr = memalign(align, 1024);
|
|
ASSERT_TRUE(ptr != NULL) << "Failed at align " << align;
|
|
free(ptr);
|
|
}
|
|
}
|
|
|
|
TEST(malloc, posix_memalign_non_power2) {
|
|
void* ptr;
|
|
ASSERT_EQ(EINVAL, posix_memalign(&ptr, 17, 1024));
|
|
}
|
|
|
|
TEST(malloc, posix_memalign_overflow) {
|
|
void* ptr;
|
|
ASSERT_NE(0, posix_memalign(&ptr, 16, SIZE_MAX));
|
|
}
|
|
|
|
TEST(malloc, memalign_realloc) {
|
|
// Memalign and then realloc the pointer a couple of times.
|
|
for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) {
|
|
char *ptr = (char*)memalign(alignment, 100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
ASSERT_EQ(0U, (intptr_t)ptr % alignment);
|
|
memset(ptr, 0x23, 100);
|
|
|
|
ptr = (char*)realloc(ptr, 200);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
ASSERT_TRUE(ptr != NULL);
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
memset(ptr, 0x45, 200);
|
|
|
|
ptr = (char*)realloc(ptr, 300);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(300U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 200; i++) {
|
|
ASSERT_EQ(0x45, ptr[i]);
|
|
}
|
|
memset(ptr, 0x67, 300);
|
|
|
|
ptr = (char*)realloc(ptr, 250);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(250U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 250; i++) {
|
|
ASSERT_EQ(0x67, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
}
|
|
|
|
TEST(malloc, malloc_realloc_larger) {
|
|
// Realloc to a larger size, malloc is used for the original allocation.
|
|
char *ptr = (char *)malloc(100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
memset(ptr, 67, 100);
|
|
|
|
ptr = (char *)realloc(ptr, 200);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(67, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, malloc_realloc_smaller) {
|
|
// Realloc to a smaller size, malloc is used for the original allocation.
|
|
char *ptr = (char *)malloc(200);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
memset(ptr, 67, 200);
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(67, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, malloc_multiple_realloc) {
|
|
// Multiple reallocs, malloc is used for the original allocation.
|
|
char *ptr = (char *)malloc(200);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
memset(ptr, 0x23, 200);
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 50);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(50U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 150);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(150U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
memset(ptr, 0x23, 150);
|
|
|
|
ptr = (char*)realloc(ptr, 425);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(425U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 150; i++) {
|
|
ASSERT_EQ(0x23, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_realloc_larger) {
|
|
// Realloc to a larger size, calloc is used for the original allocation.
|
|
char *ptr = (char *)calloc(1, 100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
|
|
ptr = (char *)realloc(ptr, 200);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_realloc_smaller) {
|
|
// Realloc to a smaller size, calloc is used for the original allocation.
|
|
char *ptr = (char *)calloc(1, 200);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, calloc_multiple_realloc) {
|
|
// Multiple reallocs, calloc is used for the original allocation.
|
|
char *ptr = (char *)calloc(1, 200);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(200U, malloc_usable_size(ptr));
|
|
|
|
ptr = (char *)realloc(ptr, 100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(100U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 100; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 50);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(50U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
|
|
ptr = (char*)realloc(ptr, 150);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(150U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 50; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
memset(ptr, 0, 150);
|
|
|
|
ptr = (char*)realloc(ptr, 425);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_LE(425U, malloc_usable_size(ptr));
|
|
for (size_t i = 0; i < 150; i++) {
|
|
ASSERT_EQ(0, ptr[i]);
|
|
}
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, realloc_overflow) {
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, realloc(NULL, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
void* ptr = malloc(100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
errno = 0;
|
|
ASSERT_EQ(NULL, realloc(ptr, SIZE_MAX));
|
|
ASSERT_EQ(ENOMEM, errno);
|
|
free(ptr);
|
|
}
|
|
|
|
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
|
|
extern "C" void* pvalloc(size_t);
|
|
extern "C" void* valloc(size_t);
|
|
|
|
TEST(malloc, pvalloc_std) {
|
|
size_t pagesize = sysconf(_SC_PAGESIZE);
|
|
void* ptr = pvalloc(100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
|
|
ASSERT_LE(pagesize, malloc_usable_size(ptr));
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, pvalloc_overflow) {
|
|
ASSERT_EQ(NULL, pvalloc(SIZE_MAX));
|
|
}
|
|
|
|
TEST(malloc, valloc_std) {
|
|
size_t pagesize = sysconf(_SC_PAGESIZE);
|
|
void* ptr = pvalloc(100);
|
|
ASSERT_TRUE(ptr != NULL);
|
|
ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
|
|
free(ptr);
|
|
}
|
|
|
|
TEST(malloc, valloc_overflow) {
|
|
ASSERT_EQ(NULL, valloc(SIZE_MAX));
|
|
}
|
|
#endif
|
|
|
|
TEST(malloc, malloc_info) {
|
|
#ifdef __BIONIC__
|
|
char* buf;
|
|
size_t bufsize;
|
|
FILE* memstream = open_memstream(&buf, &bufsize);
|
|
ASSERT_NE(nullptr, memstream);
|
|
ASSERT_EQ(0, malloc_info(0, memstream));
|
|
ASSERT_EQ(0, fclose(memstream));
|
|
|
|
tinyxml2::XMLDocument doc;
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(buf));
|
|
|
|
auto root = doc.FirstChildElement();
|
|
ASSERT_NE(nullptr, root);
|
|
ASSERT_STREQ("malloc", root->Name());
|
|
ASSERT_STREQ("jemalloc-1", root->Attribute("version"));
|
|
|
|
auto arena = root->FirstChildElement();
|
|
for (; arena != nullptr; arena = arena->NextSiblingElement()) {
|
|
int val;
|
|
|
|
ASSERT_STREQ("heap", arena->Name());
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-large")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
arena->FirstChildElement("bins-total")->QueryIntText(&val));
|
|
|
|
auto bin = arena->FirstChildElement("bin");
|
|
for (; bin != nullptr; bin = bin ->NextSiblingElement()) {
|
|
if (strcmp(bin->Name(), "bin") == 0) {
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
bin->FirstChildElement("allocated")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
bin->FirstChildElement("nmalloc")->QueryIntText(&val));
|
|
ASSERT_EQ(tinyxml2::XML_SUCCESS,
|
|
bin->FirstChildElement("ndalloc")->QueryIntText(&val));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
TEST(malloc, calloc_usable_size) {
|
|
for (size_t size = 1; size <= 2048; size++) {
|
|
void* pointer = malloc(size);
|
|
ASSERT_TRUE(pointer != nullptr);
|
|
memset(pointer, 0xeb, malloc_usable_size(pointer));
|
|
free(pointer);
|
|
|
|
// We should get a previous pointer that has been set to non-zero.
|
|
// If calloc does not zero out all of the data, this will fail.
|
|
uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size));
|
|
ASSERT_TRUE(pointer != nullptr);
|
|
size_t usable_size = malloc_usable_size(zero_mem);
|
|
for (size_t i = 0; i < usable_size; i++) {
|
|
ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i;
|
|
}
|
|
free(zero_mem);
|
|
}
|
|
}
|
|
|
|
TEST(malloc, malloc_0) {
|
|
void* p = malloc(0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, calloc_0_0) {
|
|
void* p = calloc(0, 0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, calloc_0_1) {
|
|
void* p = calloc(0, 1);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, calloc_1_0) {
|
|
void* p = calloc(1, 0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, realloc_nullptr_0) {
|
|
// realloc(nullptr, size) is actually malloc(size).
|
|
void* p = realloc(nullptr, 0);
|
|
ASSERT_TRUE(p != nullptr);
|
|
free(p);
|
|
}
|
|
|
|
TEST(malloc, realloc_0) {
|
|
void* p = malloc(1024);
|
|
ASSERT_TRUE(p != nullptr);
|
|
// realloc(p, 0) is actually free(p).
|
|
void* p2 = realloc(p, 0);
|
|
ASSERT_TRUE(p2 == nullptr);
|
|
}
|
|
|
|
constexpr size_t MAX_LOOPS = 200;
|
|
|
|
// Make sure that memory returned by malloc is aligned to allow these data types.
|
|
TEST(malloc, verify_alignment) {
|
|
uint32_t** values_32 = new uint32_t*[MAX_LOOPS];
|
|
uint64_t** values_64 = new uint64_t*[MAX_LOOPS];
|
|
long double** values_ldouble = new long double*[MAX_LOOPS];
|
|
// Use filler to attempt to force the allocator to get potentially bad alignments.
|
|
void** filler = new void*[MAX_LOOPS];
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
// Check uint32_t pointers.
|
|
filler[i] = malloc(1);
|
|
ASSERT_TRUE(filler[i] != nullptr);
|
|
|
|
values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t)));
|
|
ASSERT_TRUE(values_32[i] != nullptr);
|
|
*values_32[i] = i;
|
|
ASSERT_EQ(*values_32[i], i);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1));
|
|
|
|
free(filler[i]);
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
// Check uint64_t pointers.
|
|
filler[i] = malloc(1);
|
|
ASSERT_TRUE(filler[i] != nullptr);
|
|
|
|
values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t)));
|
|
ASSERT_TRUE(values_64[i] != nullptr);
|
|
*values_64[i] = 0x1000 + i;
|
|
ASSERT_EQ(*values_64[i], 0x1000 + i);
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1));
|
|
|
|
free(filler[i]);
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
// Check long double pointers.
|
|
filler[i] = malloc(1);
|
|
ASSERT_TRUE(filler[i] != nullptr);
|
|
|
|
values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double)));
|
|
ASSERT_TRUE(values_ldouble[i] != nullptr);
|
|
*values_ldouble[i] = 5.5 + i;
|
|
ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i);
|
|
// 32 bit glibc has a long double size of 12 bytes, so hardcode the
|
|
// required alignment to 0x7.
|
|
#if !defined(__BIONIC__) && !defined(__LP64__)
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7);
|
|
#else
|
|
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1));
|
|
#endif
|
|
|
|
free(filler[i]);
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_LOOPS; i++) {
|
|
free(values_32[i]);
|
|
free(values_64[i]);
|
|
free(values_ldouble[i]);
|
|
}
|
|
|
|
delete[] filler;
|
|
delete[] values_32;
|
|
delete[] values_64;
|
|
delete[] values_ldouble;
|
|
}
|